

The H₂ districts P+D project: roadmap and preliminary results Work package 5

Gabriele Humbert¹, Matthias Brandes¹, Thomas Walter², Kevin Wister³, Philipp Heer¹

¹ Urban Energy Systems Laboratory, Empa, Dübendorf, Switzerland

² H2Energy AG, Zürich, Switzerland

³ Hälg AG, St. Gallen, Switzerland

1 INTRODUCTION AND MOTIVATIONS

- The H2districts project deals with the design and operation of proton exchange \bullet membrane (PEM) fuel cells used as combined heat and power (CHP) systems in districts.
- We assess the potential to • address peak energy demand during winter and decarbonize the heating sector.
- The expected benefits area \bullet reduction of grid reinforcement needs, an increase in local selfsufficiency, and support in energy system resilience and decarbonization through green hydrogen.

2 RESEARCH QUESTIONS

- How and to what extent can the flexibility provided by hydrogen fuel cells in district energy systems be maximized, and how much grid reinforcement cost can be deferred or saved? **WP2**
- How does aging affect the fuel cell performance and lifetime during stationary applications? **WP3**
- What district settings are most suited for such systems? **WP4**

#	Name	WP Lead	Support	'23			'24				'25			
#				Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
WP1	kvyreen integration	Hälg	Empa, Osterwalder, H2Energy				<	>-> <	► MS1					
WP2	Development of grid-supporting operating strategies	Empa	Hälg, H2Energy					<	>≁∢	MS2				
WP3	Aging considerations	Empa	Osterwalder, H2Energy							<	MS3			
WP4	Techno-economic analysis	Empa	Hälg, Osterwalder, H2Energy				<	MS4				<	▶ MS5	
WP5	Project Management	Hälg												
				'23			'24			'25				
				Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	

3 INSTALLATION AND COMMISSIONING

- A 60 kW_{el} and 60 kW_{th} PEM fuel cell was installed at the NEST+move demonstrators at Empa [1,2].
- After securing permits, the system was integrated electrically thermally. Commissioning tests verified and power generation, H2 supply, and heat transfer.

Sizes of Empa demonstrator

- The data connection will be finalized by December 2024, such that the experimental campaign can begin.
- The system is connected to the medium-temperature district heating network (28 to 38 °C) of the Empa campus.
- The project will consider the demand from the NEST building, which hosts office spaces, apartments and a gym, and other office buildings on the Empa campus.
- Key Learnings: The process of acquiring permits required multiple iterations with authorities, which caused delays.

4 OPERATION STRATEGIES (WP2)

- The objective is to develop control strategies to (i) reduce grid loads, (ii) reduce emissions and (iii) save costs for the user.
- Predictive control methods will be implemented to leverage the potential of the fuel cell, as well as PV availability, heat pumps and storage solutions.
- One of the targets is the reduction of peaks in electricity demand on a 15-minute.
- Accurate forecast for demand peaks over short periods remains a challenge [3]. The proposed solution is the definition of upper bounds for the imported electricity as soft-constraint in short-term optimal control.

Import Threshold_{nev}

5 TECHO-ECONOMIC ANALYSIS (WP3 and WP4)

Multiple scenarios will be investigated by means of the EhubX tool [4] to identify the most attractive design cases for the system under analysis.

Import Threshold old

REFERENCES

[1] NEST – buildings of the future https://www.empa.ch/web/nest/ [2] MOVE – mobility of the future, https://www.empa.ch/web/move [3] Pierre et al., Peak Electrical Energy Consumption Prediction by ARIMA, LSTM, GRU, ARIMA-LSTM and ARIMA-GRU Approaches, 2022; [4] Bollinger et al., The Ehub Modeling Tool: A flexible software package for district energy system optimization, 2017.

CONTACT

Gabriele Humbert Empa Urban Energy System Laboratory Gabriele.humbert@empa.ch www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

This work was supported by the Swiss Federal Office of Energy's: "P+D" office and "SWEET" programme