

High-fidelity modeling for sector coupling and flexibility assessment in planning and operation: a case study of hydrogen generation site

Work package 3

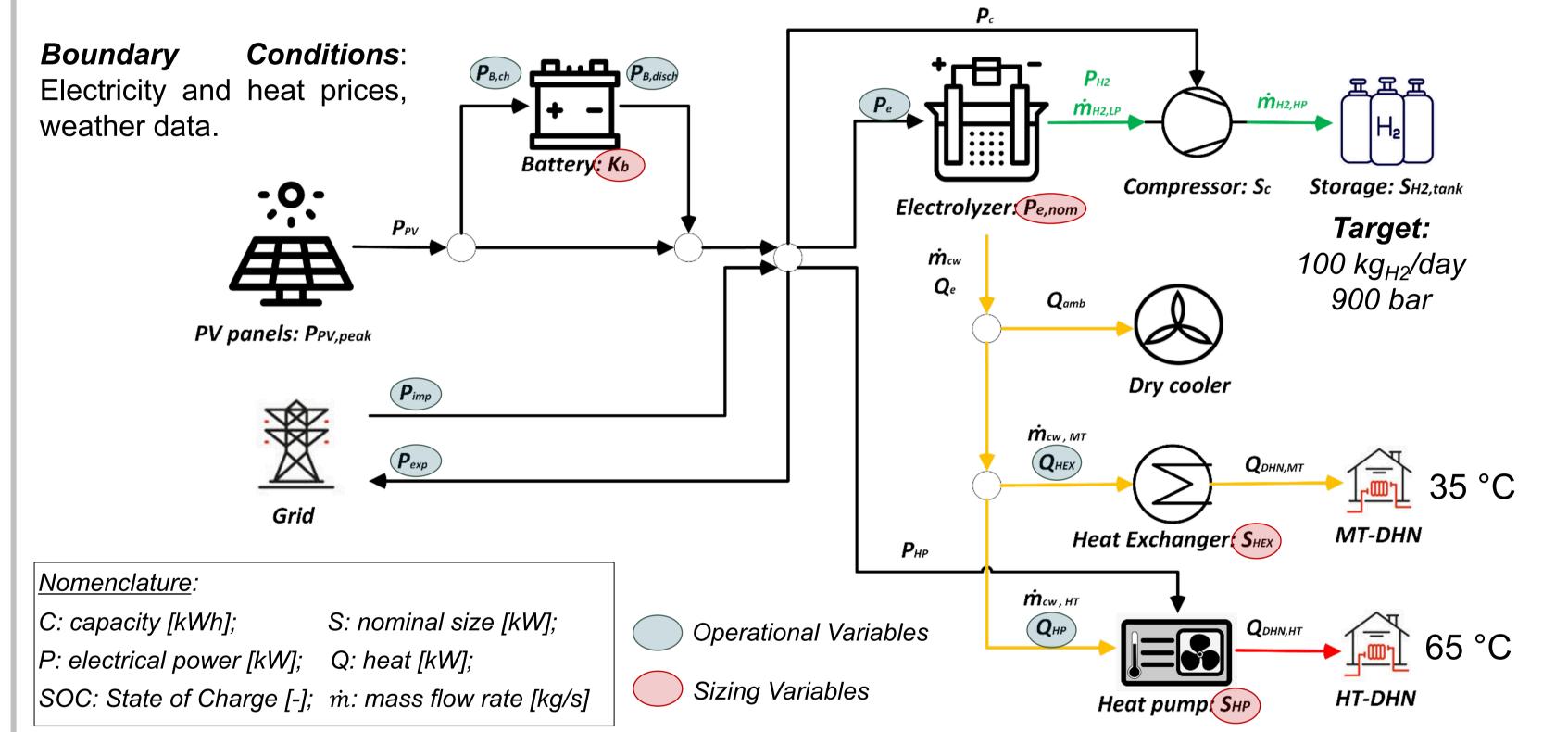
Gabriele Humbert¹, Roxanne Vandenberghe¹, De Koning Josien¹, Hanmin Cai¹, Binod Prasad Koirala¹, Philipp Heer¹ ¹Urban Energy Systems Laboratory, Empa, Dübendorf, Switzerland

1 INTRODUCTION AND OBJECTIVES

This work deals with cost-effective generation of hydrogen and flexibility provision from hydrogen generation sites. The following research questions were addressed:

Q1 – does the adoption of high-fidelity models affect the identified optimal design?

- **Q2** how much can waste heat recovery reduce the levelised cost of hydrogen?
- **Q3** how much flexibility can an hydrogen generation site provide?


2 CONTRIBUTIONS TO PATHFDNR

C1 – planning phase: under the hypothesis of perfect predictions, development of a numerical tool for the optimal sizing and operation of hydrogen generation sites and study of the impact of modelling level of fidelity;

C2 – planning phase: assessment of the economical benefits from sector coupling between hydrogen generation sites and district heating networks;

C3 – operational phase: quantification of flexibility provision from the operation of an hydrogen generation site and development of flexible control strategies;

3 METHODOLOGY – ENERGY SYSTEM AND NUMERICAL TOOLS

P_{PV,peak} [kW]

+0%

+0%

break

points

Const

n = 2

Planning phase: perfect forecasts.

Mixed integer linear programming (**MILP**) for the minimization of the levelised cost of hydrogen with the key components sizes and operational variables as design variables; A desired hydrogen production of 100 kg/day is targeted; Use of high-fidelity models from manufactures and literature [1];

Analysis of the operation of a representative case study

Operational phase: case study of MOVE [2].

MOVE is a refuelling station for hydrogen vehicles with a PEM electrolyser of 186 kW. MILP for operational cost minimization with PWA functions calibrated over historical data; Quantification of flexibility through flexibility envelope [3].

4 PLANNING PHASE – OPTIMAL DESIGN

4.1	Use	of	high-	fidelity	models
-----	-----	----	-------	----------	--------

The optimal sizes are compared for different modelling level of fidelity for the electrolyzer efficiency, η_e , with the symbol *n* indicating the number of PWA breakpoints for the approximation.

The optimal configuration converges

1500 411 103 0 +0.12% -0.06% +0% +0%

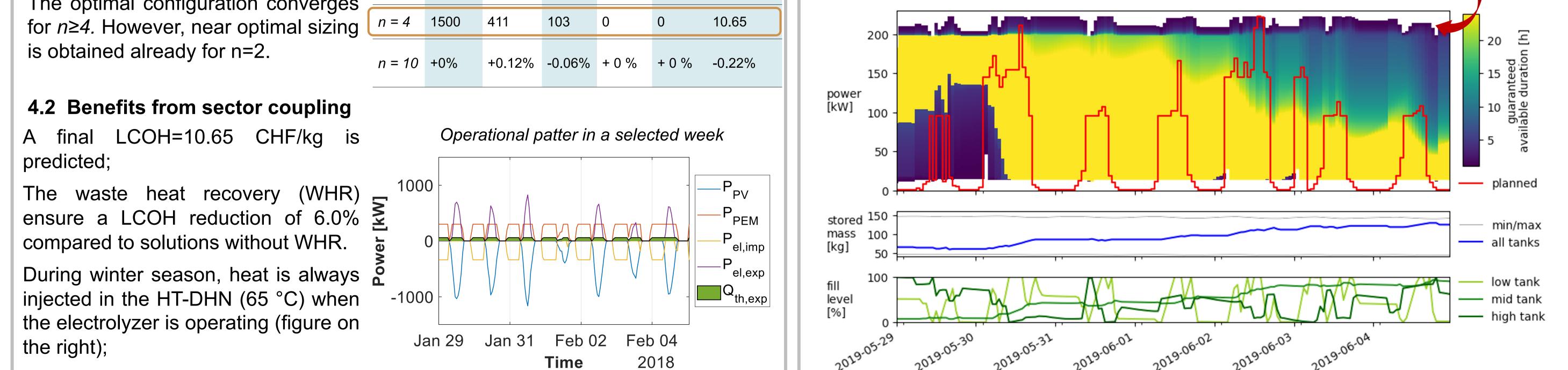
[kW]

-9.95% -9.35% +0 %

-0.94% -0.27% +0%

[kW]

Optimal components' sizes and capacities for


increasing modelling fidelity

[kW]

5 OPERATIONAL PHASE – FLEXIBILITY PROVISION

When high fill level are measured in the storage tanks, the maximum power can be provided for short times;

The lower power bound has very sharp drops in guaranteed duration when going from one power level to the next. This is due to the non-convex energy bounds;

LCOH

[CHF/kg]

+3.53%

+0% +1.69%

[kWh]

+0 %

The concept of flexibility envelope [3] a slice of Available lexibilit duration Flexible

REFERENCES

1 Gabrielli et al., Electrochemical conversion technologies for optimal design of decentralized multi-energy systems: Modeling framework and technology assessment, 2018

2 MOVE – mobility of the future, https://www.empa.ch/web/move

3 Gasser et al., Predictive energy management of residential buildings while self-reporting flexibility envelope, 2021

CONTACT

Gabriele Humbert Empa Urban Energy System Laboratoy Gabriele.humbert@iempa.ch www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

This work was performed by the PATHFNDR consortium, which is sponsored by the Swiss Federal Office of Energy's SWEET programme.