

PATHFNDR scenarios

Work package 1

Francesco Sanvito¹, Jared Garrison², Adriana Marcucci³, Gianfranco Guidati³, Blazhe Gjorgiev⁴, Stefan Pfenninger¹

¹ Faculty of Technology, Policy and Management (TPM), Delft University of Technology, Delft, the Netherlands

- ² Research Center for Energy Networks (FEN), ETH Zurich, Zurich, Switzerland
- ³ Energy Science Center, ETH Zurich, Zurich, Switzerland
- ⁴ Reliability and Risk Engineering Lab, ETH Zurich, Zurich, Switzerland

What are **PATHFNDR** scenarios?

- Scenarios are **alternative developments** of the future energy system ۲
- Quantifying these scenarios helps us understand the role of **flexibility** and \bullet **sector coupling** in achieving the Swiss net zero GHG goal

Synthesis Report 3 (*unpublished*)

- Direct electrification is the cost-optimal solution for transport and heat decarbonization.
- Trasmission lines and CHP plants provide additional flexibility when EV charging is not flexible.
- Alpine PV kicks in when fuel import/export and NTCs are constrained.
- EV flexibility (when NTCs are not restricted) reduces the need for flexibility in the power sector that means less CHP plants deployment and **higher heat pump** penetration in the heat sector.
- Higher EV flexibility reduces the need for heat storage utilization

REFERENCES

[1] Sanvito et al., (2023) The role of flexibility and sector coupling in the Swiss energy system

[2] Sanvito et al., (2024) Scenario dimensions and scenario construction process - v24.03

CONTACT

Francesco Sanvito, TU Delft, <u>F.Sanvito@tudelft.nl</u> Jared Garrison, ETH Zurich, garrison@fen.ethz.ch

www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

This work was performed by the PATHFNDR consortium, which is sponsored by the Swiss Federal Office of Energy's SWEET programme.