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On the way to Decarbonization — electrification

« Globally, renewable energy source (RES) has tripled from 1990 to 2020, accounting for
12.5% of the global primary energy supply;
 RES technologies are primarily available in the power sector, making electrification a

key strategy for decarbonisation.
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Harder-to-abate sectors

Direct electrification is challenging in certain
sectors (“harder-to-abate” sectors), such
as aviation, shipping, heavy-duty road
transport, etc. [1];

Power-to-X (PtX) is one of the ways to
achieve full decarbonisation;

PtX is a collective term for conversion

technologies that turn electricity into
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carbon-neutral synthetic fuels, such as Power-to-Heat, heat pump, Power-to-Gas for Power:to-Chermicals
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Power-to-Gas power fuels

or chemicals. Power-to-Gas for @ Electromobility Power-to-X / eFuels
power storage

[1] Philbert C., Direct and indirect electrification of industry and beyond, 2019
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The winter problem

 RES generation is characterized by intermittency and seasonality;

* In the instance of Switzerland, electricity is exported in summer (excess) and imported in

winter (deficit) to/from neighbouring countries.
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PtX for long-term storage
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[1] Sterner, M.; Stadler, I. Handbook of Energy Storage: Demand, Technologies,
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Balance between supply and demand

Power-to-X can also be used in the
short-term to avoid grid congestion
and balance energy supply and
demand,;

Sudden excess of electricity production
can be converted into fuel;

Reserve of fuel, e.g. hydrogen, can be
used to cover unexpected increases of

energy demand or to avoid peaks;

PATHFNDR ———— —
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Swiss Energy system in 2050
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Figure 3.18: Yearly balance of captured CO, sources and uses in Switzerland in all four scenarios.

The marker shows the national net carbon balance. The category CO, terminal export represents
permanent sequestration of the CO, abroad.

Figure 3.15: Yearly balance of methane fuel production and consumption in Switzerland in all four
scenarios.

Sanvito, F., Garrison, J. (2024). The role of flexibility and sector
PATHFNDR > coupling in the Swiss energy system. SWEET PATHFNDR 16.10.2024 7
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Summary of motivations for PtX technologies

Renewable energy sources are intermittent and seasonal - long-term storage solution
Effective way to balance supply and demand - flexibility provision
Provide a way to decarbonize harder-to-abate sectors - sector coupling
Depending on the process, they might require CO, - carbon capture and utilization
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Key challenges for Power-to-X

. Complex systems to design, build and

0 -
operate; 5
. Mainly for gas, challenges during storage =" -
: ES
periods; 30
. . . E o m Al
. High costs for production, transportation, 820 =si
o Fem
distribution and use; 0 M9 iesel
10
Zn wCoal % Gasoline
i Li%vLNG r e
. DOE Hz.: T Liquified H2
. Low technology readiness levels; o L éauen}i_/, - e
. They require significant power for the ’ " Specific Energy [W-hikg] ®
. . Fig. 4. Comparison between the volumetric energy density and specific energy
0) p eratlo n ) with different types of energy sources, the data presented here does not take

into account the storage tank system [17].

Ababneh et al., Electrofuels as emerging new green alternative fuel: A
PATHFNDR —— C— review of recent literature, 2022 16.10.2024



Why Synthetic Methane?

« Compared to other synthetic fuels, synthetic CH4 2 e b 203 6 2050 (USD Bilkors
possesses a relatively high energy density and oo
can rely on existing infrastructures [1]; . ——
« The production of synthetic CH4 can utilize CO2; " |
* The process to produce synthetic CH4 is highly w0 =
exothermic, thus providing good potential for .
optimal thermal management; ,

2021 2022 2033 2024 2025 2026 027 2028 2029 2030

[1] Seyed Mojtaba Alirahmi et al., Renewable-integrated flexible production of energy and methane via
re-using existing offshore oil and gas infrastructure, Journal of Cleaner Production, 2023

PATHFN DH e - [2] SNS insiders, Synthetic Natural Gas Market, 2023 16.10.2024



How is synthetic methane produced?

Biochemical pathway Thermochemical pathway Electrochemical pathway
P Bomass | | Bomass 1| 1 Electricity |
) : (biodegradable material) E ! (lignocellulosic biomass) E ! (excess power) i
« There are several ways of producing et T | I
SynthetiC methane; Anaerobic digestion Fuel pre-treatment Electrolysis
* The electrochemical pathway does not v | v
. . . G(Ia: clljfietlir;isn)g Gasification Methanation
require biomass and can exploit excess pl l
.. ] v
of electricity (RES); - ' ——
- , separation corciionliia Gas upgrade
* However, currently, costs are too high. 1
° Selhng price Of NG in SWitzerIand: 130 Grid injection Methanation Grid injection
€/MWh to 170 € MWh 50-160 |
€/MWh Gas upgrade 350 - 590
€/MWh
(With DAC)

Grid injection 70'180
€/MWh

Fendt et al., Comparison of synthetic natural gas production pathways for the
PATHFNDR —— L — storage of renewable energy, 2015 16.10.2024 11




Electrochemical pathway - Sabatier reaction

Among the different ways of producing synthetic methane, we focus on the Sabatier process:
CO, +4H, —» CH, + 2H,0 + 164.9 kJ/KQcn,

Key advantages: it utilizes CO, , it can be powered by RES and it is exothermic

Electrolyzer — Electrical power, P
* - — Heat, Q
P- — Muz — Hydrogen stream, my,
>} { — Methane stream, rigy,
l - Carbon dioxide stream, i,
Methanator
PDAC 129 ® mCH4 b
® @ b LLLOS
DI ® — .l
CHs Storage
QDAC Qmeth g

Simplified schematic of a synthetic methane production site relying on the Sabitier process

PATHFNDR —— —
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Proton Exchange Membrane (PEM) electrolyzers — performance

PEM electrolyzers uses electricity to split water
into hydrogen and oxygen,;
PEM operates with high responsivity (ramping

rates =2.5 to 8 %.,./s) and produce H2 at high-

size
quality;

The production of 1 kg of H2 requires =58 kWh at
nominal point and =50 kWh at the point of
maximum efficiency;

Energy consumption depends on how electrolyzer

Is operated and sized.
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Ways to capture CO,

CO2 can be removed from
either the point source
emission or directly from the
air;

Direct air capture (DAC) as the
key advantages of scalability
(large-scale deployment) and it
does not have geographical

constraints.

PATHFNDR ————
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Direct Air Capture (DAC) units — physical principle

 DAC technologies can be situated independently of emission sources and can be powered
by RES;
» Solid-sorbent DAC requires both heat (=100 °C) and electrical power;

PHASE 1 PHASE 2

‘ Once the filter is saturated with

C02 the filter is heated to 100 °C.
. ;1 *o N °
e CO;,- free air
" A e ey

w coy is then released

CO, is chemically from the filter and
bound to the filter. collected. Concentrated CO,

Ambient
« air

Beuttler C., The Role of Direct Air Capture in Mitigation of Anthropogenic
PATHFNDR ———— el Greenhouse Gas Emissions, 2019 16.10.2024 15



Direct Air Capture (DAC) units — energy requirements

 The DAC energy demand strongly depends on the ambient conditions [1].
* For 5 °C and relative humidity of 80% - <100 kWh_/t-5, and <1000 kWh /t-o
« For 25 °C and and relative humidity of 60% > 600 kWh,/t-5, and 2200 kWhy,/t 5,

PATHFNDR ————
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Optimal Design of Synthetic methane production sites

P b,ch
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Optimal Desing of Synthetic methane production sites
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Boundary conditions

« The optimization approach considers a 1-year horizon and 1-hour resolution.

» As a case study, the year 2022 and the city of Zurich were considered.

Irradiance Cost to import electricity
1000 T T T T T T T T — 1 T T T T T T T T
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E 2
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Design approach - MILP

« Adeterministic mixed integer linear programming (MILP) approach was adopted.

4 ) - ™ e
Input data MILP run Post-
Weather data ] [ \ [ Linear constraints: | pI’OCESSIng
Decision variables: energy and mass p \
0 \ (i) Sizing variables | | balances, technical Solution minimising
Methane (ii) Operational constraints, Max. objective function:
production target . | sizes/capacities optimal sizing and
L b, variables p N operation
( ) - \ / Components - > <
Electricity and heat Objective function: modelling and PWA T
prices total cost approximation of VALCOM
\ Y, minimization cost curves L )
\ \. J
Techno-economic Matlab with Gurobi ®=
parameters ‘ @ curoe e
) \— _ - /
PATHENDR — B VALCOM: value-adjusted levelized cost of methane

16.10.2024 20



Decision variables —what can the optimizer decide

P:

Electrolyzer:

H2 Storage:

mCH4,demand

k

+

et " Mana, 1p A Mcra, e -
AR > >
Compressor: Storage:
PV panels: Qn Sc Scra, SOCcha

O Sizing decision variables

(O Operational decision variables

Nomenclature:

C: capacity [kwh]; S: nominal size [kW];
P: electrical power [kW]; Q: heat [kW];

SOC: State of Charge [-]; m: mass flow rate [kg/s]

PATHFNDR ———— et 16.10.2024
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Objective function —what do we optimize for?

» For the selected location, techno-economic parameters and desired methane production rate, what are
the sizing and operational variables to achieve minimal total cost?

( min(cost;,;)

K9cha
day
Energy and mass balance
Operational and technical constraints

S.t.Mcyagay > 100

: . _ .
\ maximum componets sizes Value-adjusted levelised cost of methane
cost —cost -
COStior = COStiny, + COStyy, + COStmaintance T COStshut—down - VALCOM = “’thH shut=down
o __ y#components UP; 4,year
% COStiny, = X4 Si
L= lifetime;
8760 8760 8760
“* CoStop = din= Ptmp(t) COSlgg me(t) — Xn= Pexp(t) CoStgy exp(t) + Xns lep(t) COStheqt lmp(t)
RN #components S. .
¢ COStmamtance — Zi=1 i’ COStmaintanace,%
#shut—down Cshut—downu
® COStopyi— = )2 : 1
shut—down j=1 (lengthshyt—down) > []

PATHFNDR — - [1] Rioja et al., Applied Energy, 2022 16.10.2024 22



Results — optimal sizing

CAPEX distribution
<1% 4o

2%

« Main CAPEX drivers are PV, PEM, DAC (91 %) B Compressol
« Local PV generation is beneficial. Available PV space =E\E/M
has a large influence on VALCOM. I DAC
o HP

« Compared to a case without waste heat recovery "I Methanation

(WHR): H2 tank
: [ IBattery
— heat from DHN reduced by 82%; —ITES

— Optimal sizes are slightly affected;
— VALCOM reduced by 5.74%.

Spy Mcoznom | McHanom | H2tank | Battery TES | VALCOM
[KW] o) [kgcop/h] | [kgeop/h] | [kWhH] | [kWh] [kvvh] [€/MWh]

22%

284.4 772 505.25
with WHR 1 ax) 13.8 (+ 25%) (max) (-5.74%)
wio WHR 2344 140 13.8 5.0 617.6 0 80 534,23

(max) (max)

PATHFN DH * 16.10.2024 23



Results — optimal operation

» Operational costs account for 71.8% of total costs;
« Thanks to optimal thermal integration, costs for heat imports are almost null;

« Main electricity consumption from PEM electrolyzer:
— DAC: 32.02 MWhell/year; PEM: 917.3 MWhel/year
— When solar availability is high, electricity is imported at night and early morning.

150 : — | | . . ,
i I f
100 1
50 | PF>v
E /\ /\ PPEM
x 0= . Y T - \ T Pel,imp
g \ / { \ | I:)el,exp
s 90 \/ 1 —Ppac
o \/ p
-100 | 1 HP
Pc,CH4
-150
_200 1 1 1 1 1 | 1
Feb 25 Feb 26 Feb 27 Feb 28 Mar 01 Mar 02 Mar 03 Mar 04

Time 2022
PATHFN DH - ——— 16.10.2024 24



Impact of storage options

« Accounting for storage options impacts the optimal sizing of conversion technologies: PEM
electrolyzer size increase by 16.7%;

« H2 tank and TES selected, while battery is not selected due to high investment costs;

» Operational costs are reduced, while investment cost slightly increased > VALCOM reduced by

No storage options Storage options
available available (battery, H2
tank, TES)

1.44%

PV [kW] 284.4 (max) 284.4 (max)
PEM [kKW] 120.0 140.0 +16.7%
DAC [kW] 16.5 16.5
HEAT PUMP [kW] 28.9 29.0
COMPRESSOR [kW] 0.5 0.5
H2 tank [KWh] 0.0
Battery [kKWh] 0.0 0.0
TES [KWh] 0.0
VALCOM [€/MWh] 542.0 534.2
difference - -1.44%

PATHFN DH - — 16.10.2024
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Impact of DAC modelling level of fidelity

« Low-fidelity: constant consumption (based on average T and humidity);

« High-fidelity [1]: consumption as a function of weather data;
— Low-fidelity model underestimaes VALCOM (difference of 3.37%);
— Device sizing (number of units) remains unvaried in the example selected.

low fidelity high fidelity
§ 1200 §1eoo M
s = 1400 | 1
E 1000 f E
c = 1200 | ]
2 o
S
> S 800 ]
D oot @ [€I MWh]
9 o 600 1 - . .
> 40| 2 Low fidelity 488.76
o 3 400 ]
) !CT) o o o
T 200 g 20 1 ngh fldellty 505.25
. ‘ 0 . ‘ ‘ .
0 20 40 60 80 100 0 20 40 60 80 100
time time
Power Power |
Heat Heat
[1] Wiegner et al., Optimal Design and Operation of Solid Sorbent Direct
PATHFN DH - Air Capture Processes at Varying Ambient Conditions, 2022 16.10.2024
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Tim Mdller, Optimal design of synthetic methane production site including

device sizes and operating schedule, master thesis ETH, 2024
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Monte-Carlo optimization — preliminary results

« Scenarios created using roulette-wheel [1] for:
Irradiance, cost of energy, temperature, humidity;

» Currently, no correlations between parameters is
considered, e.g. higher irradiance does not mean
higher temperature.

35

Temperature [ °C ]

5 10 15 20 25 30
Time [hours]

Results indicated the H2 tank as the most sensitive size;

However, for the considered design case, no major
differences were found compared to the deterministic case

0 kWh 13.75 kg/h 140 kW 70 KWh Variable
[100 %] [100 %] [100 %] [86 %]

moduI
es

Occure 7 5 9 24 29 32 39 28 25 23 18 8 7

ncies

Each module stores 70 kWh of H2

Results from Tim Muller, Optimal design of synthetic methane production
site including device sizes and operating schedule, master thesis ETH, 2024

PATHFNDR : [1] Emanuela Marzi et. al.: Power-to-Gas for energy system flexibility under

16.10.2024 28
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Synthetic methane production at Empa: move-mega

« Empa hosts a demonstrator for the future of mobility: move;
* The site hosts a 180 kW PEM electrolyzer. Hydrogen is stored up to 900 bar;

« The move-mega project will expand the current demonstrator by the addition of DAC unit from
climeworks and an innovative methanator concept [1];

* The goal is to monitor performance in a real-world scale and to develop and test control strategies [2] to
maximize hydrogen and methane production;

37

Move-mega
[1] Kiefer et al., Sorption-enhanced methane synthesis in fixed-bed reactors,
2023
PATHFNDR » [2] Barbaresi et al., Partial-Load and Dynamic Operation of Methane Synthesis 16.10.2024 29
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Key takeaways

« Optimal solution is highly sensitive to input parameters, which needs to be
selected carefully;

« Operational costs are the dominating cost factor and are mainly dictated by
the imported electricity to operated the PEM electrolyzer. The main CAPEX
are linked to PV, PEM electrolyzer and DAC,

« The use of storage options impact the optimal sizing of conversion
technologies.

 Optimal thermal management reduces VALCOM of 5.74%, with a 82%
reduction in imported heat compared to design solutions without waste heat
recovery.

PATHFN DH - — 16.10.2024 30



Reflections and future research directions

* Design of energy systems:
 The uncertainty linked to input parameters and boundary conditions need to be
considered during the design phase to generate robust ‘optimal’ design;
* More accurate operational constraints needs to be included in the design problem to
reduce the gap between design and operational stages and avoid suboptimal
operation;

« Synthetic methane:
* Need to reduce investment costs for H2 and CO2 production technologies;
« QOperational costs for electricity are high; economic viability depends on RES
availability;

« Hurdles for DAC:
« Lack of in-field data and unit prices;
* Investment costs are still high;
* Need for life cycle assessment;

PATHFN DH - — 16.10.2024 31
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CO2 costs
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DAC companies
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The role of negative emissions technologies

C. Biochar D. Enhanced weathering
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Cost of storage

yearly cycles [-]
0.0 1.0 2.0 3.0 4.0 5.0
2.00 ¢ a— . : ; ;

1.80 -

1.60 -
1.40 -
1.20
1.00 -
0.80 -

LCOS [€/kWh]

0.60 -

0.40 -
0.20

0.00

0 50 100 150 200 250 300 350 400

long-term storage z
103 MW 70 Gvs\’m‘ Energy discharged [GWh/year]

2030

Fig. 2. LCOS for long-term storage systems in 2030 depending on the yearly energy discharge, not including cost of electricity.

Julch, Comparison of electricity storage options using

levelized cost of storage (LCOS) method, 2016
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Trends for the costs of key technologies

» |nvestment costs are expected to reduce by +50% in the next 20 years;

* These trends follow the typical learning curves of energy technologies;

Table 2. Average investment costs for the core components of PtG: alkaline and membrane electrolysis
(alkaline, membrane (PEM)) and methanation (chemical, biological) for the MW class. The kW unit
refers to the electrical power input of the electrolysis, not the gas flow rate [3].

Alkaline Membrane Chemical Biological
Year Electrolysis Electrolysis Methanation Methanation
in EUR/kW in EUR/kW in EUR/kW in EUR/kW

2010 1150 1650 1040 1600
2015 980 1350 870 1300
2020 850 1130 740 1050
2025 720 950 620 860
2030 620 780 520 690
2040 460 530 370 460

2050 330 350 260 300

Sterner et al., Power-to-Gas and Power-to-X—The History and Results of
Developing a New Storage Concept, 2021

PATHFNDR —— =

Table 4. Reported learning rates of selected technologies.

Technology LR Source
Lithium-ion batteries (electronics) 30% [69]
Solar PV 23% [65]
LED A lamps 18% [71]
Natural gas turbines 15% [68]
Hydraulic fracturing 13% [70]
Onshore wind 12% [68]
Nickel-metal hydride HEV batteries 11% [69]
Flue gas desulfurization systems 11% [77]
PC coal boilers 5.6% [75]
Hydroelectric power 1.4% [68]

McQueen et al., A review of direct air capture (DAC): scaling up commercial

technologies and innovating for the future, 2021
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Costs for DAC

Table 2. Literature cost estimates for solid sorbent DAC.

Sinha et al® Sinha and Realff® McQueen et al®
[19] [19] NASEME [2] [52]
Gross cost projection — §6-221 86-229 Base case: 223
(3tCO, 71 Geothermal: 205
Nuclear: 233
Net removed cost — — 124407 —d
projection ($ rCOz_l)
Scale (MtCO> yr™1) — 1 1 0.1
Plant economic 10 10 10 10
lifetime (years)
WACC — — 0% 12.5%
Electricity resource Source agnostic (-) Source agnostic Natural gas U.S. grid
(cost) (50.06 kWh™1) (560 MWh ™) ($0.06 kWh™1)
Thermal energy Steam (-) Steam Natural gas Base case steam
resource (cost) (50.0015 kg ™1) ($3.25G]7Y) (528G H

Sorbent material

MIL-101(Cr)

Specific sorbent

Specific sorbent

Geothermal waste
heat ($0.00 GJ 1)
Nuclear slip steam
($3.90 G] 1)
Specific sorbent

mmenn- material not material not material not
Mg (dpbpdc)® specified specified specified
Sorbent lifetime — 0.5 0.5 1
(years)
Sorbent capacity 1 — 1 1
(mol l;g_l ) 2.9
Adsorption process TVSA TVSA TVSA TVSA
Cyecle time (min) 40 15-85 16, 28, 42 20
75
Desorption 100 87 87 100
temperature (°C)
Desorption swing — 0.3 0.8 0.3
capacity (mol mol~*)
Includes CO» No No No No
compression?
PATHFNDR ———— —
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Figure 3. Projected levelized cost of DAC as a function of the number of doublings in the cumulative installed DAC capacity
(in tCO, yr—'). Levelized cost is the sum of lifetime capital and operating costs divided by the lifetime tonnes removed.

McQueen et al., A review of direct air capture (DAC): scaling up commercial
technologies and innovating for the future, 2021
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