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Motivation

• Transport demand is especially flexible due to its low active utilization (high percentage of time 
parking), allowing for smart integration of transport and electricity sectors. 

M
od
el
in
g Charging data is not 

always available or 
universally 
representative: 
Alternative modeling 
approaches. 

Va
lid
at
in
g Quantifying and 

predicting the available 
flexibility is crucial to 
fully exploit it:  
Data-driven 
approaches

Ac
ce
ss
in
g New policies and 

regulations are needed 
to fully access the 
available flexibility

• We discuss our work towards modeling, validating, and accessing charging demand and flexibility 
from the transport sector. 



Mobility-based quantification of 
EV fleets charging power and flexibility
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Modeling Work So Far:
From Agent-based Transport Simulations to Georeferenced Driving Energy Requirements

Nationwide Transport 
Simulation [1]

Vehicle-specific Driving Energy Estimation [2]

Parking geographic location 5 10      15     20      25     30 Driving Energy, GWh

Daily distribution of parking location 
by type

Daily national driving energy by 
mean ambient temperature

Driving energy needs grouped by 
region and urbanization

[1] A. Horni, K. Nagel, and K. Axhausen, Eds., Multi-Agent Transport Simulation MATSim. London: Ubiquity Press, Aug 2016.
[2] M. Parajeles Herrera, M. Schwarz, and G. Hug, “Spatio-Temporal Modelling of Large-Scale BEV Fleets Charging Energy Needs and Flexibility” SEST 2024.

Extend to weekly mobility and energy needs patterns using open statistical data



Estimating Charging Power: 
Base-Case Charging Profiles Formulation
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TP
Mean 

Temp., 
deg. C

Months

1 2.43 December

2 4.54
January, February, 
March, November

3 11.19 April, May, October

4 19.32
June, July, August, 
September

[3] G. Pareschi et al., “Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data,” Appl. Energy, vol. 275, p. 115318, Oct. 2020.
[4] N. Zielonka, X. Wen, and E. Trutnevyte, “Probabilistic projections of granular energy technology diffusion at the subnational level,” PNAS Nexus, Sep. 2023.

• Distribution of typical 
periods in the year

• Probabilistic projections per 
municipality [4]

Generation of weekly charging profiles
• Charging infrastructure considered widely available: 7-22 kW depending on parking 

location. 

• Charging decision subject to: 
o 𝑆𝑂𝐸 < 𝑋, 𝑋~𝒩(𝜇, 𝜎),

and additional heuristic considerations regarding:
§ minimum battery level,
§ enough energy for consecutive trips,
§ equal start and end 𝑆𝑂𝐸. • EV trails: My Electric Avenue, Switch EV, The EV Project, Pecan Street 

• Tuncated normal distribution: 𝒩(0.6, 0.2) [3]

Generation of yearly charging profiles

• Generation of charging profiles for each typical weather period.

• Electrification percentages per year applied per municipality.



Estimating Charging Flexibility: 
Power And Energy Flexibility Bounds Formulation
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• Estimation of charging power and energy flexibility, with respect to the base case charging patterns, subject to: 
• 1 ℎ𝑜𝑢𝑟 ≤ 𝑡-./0123 ≤ 15 ℎours
• 𝑡-./0123 > 𝑡45./3123
• 𝑆𝑂𝐶612.7, 8195:;9 67<=1>1719? = 𝑆𝑂𝐶612.7, 8195 67<=1>1719?

• 𝐸67<=1>7< = 3
(𝑡453. <2A− 𝑡-03. B9./9) ⋅ 𝑃453. , 𝑖𝑓 𝑡-./0123 ≥ 2 ⋅ 𝑡45./3123
(𝑡453. <2A− 𝑡67<=. C.=) ⋅ 𝑃453. , 𝑖𝑓 𝑡-./0123 < 2 ⋅ 𝑡45./3123

«base case» charging profile
Power upper and lower bounds

𝑡!"#$%&' > 2 ⋅ 𝑡()"#'%&' 𝑡!"#$%&' < 2 ⋅ 𝑡()"#'%&' Charging power and flexibility bounds



Estimating Charging Power and Flexibility: 
Power And Energy Flexibility Nationwide Bounds
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• Upwards power flexibility is estimated on an average of 1.28 GW, with a maximum of 2.6 GW.
• Downwards power flexibility is estimated on an average of 0.5 GW, with a maximum of 1.7 GW. 

• Increase of 16.5% of peak charging power on cold days with respect to warm days.
• 62% of energy charged during the week is flexible, whilst only 34% is flexible on weekends. 

Nationwide charging power and flexibility bounds during a cold week Nationwide flexible energy during a cold week 



Estimating Charging Power and Flexibility: 
Power And Energy Flexibility Localized Bounds
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Urban Periurban Rural

Charging power and 
flexibility bounds for area

87 (mostly urban)

Charging power and 
flexibility bounds for area
97 (mostly periurban)

Charging power and flexibility 
bounds for area

317 (mostly rural)



Outlook: 
Integration into Energy Systems Models 
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Generation of geographic and time-specific charging 
profiles, power, and energy flexibility bounds for 2030, 
2040, and 2050. 

Integration of the information into Nexus-e’s 
optimization model: 
•Bounds differ in space and time
•Overnight charging flexibility captured by modeling 
weekly charging patterns

Run updated simulations to study the use of the 
flexibility available in the investment and operation 
decisions at the transmission level. 

Work in progress Module implementation planned

Implementation of the transport electrification model as 
a stand-alone module in Nexus-e: 
• with varying underlying assumptions,
• and interaction with the distributed investment and 

operation decisions. 



Flexibility quantification and prediction: 
The Dutch and Swiss analysis
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§ Mobility-based modeling requires validating multiple assumptions about charging (human) behaviors

§ EV mobility data are scarce, often not publicly available and owned by single operators, such as 
charge-point (CP) operators

§ Exploiting flexibility remains a challenge even when data is available, as managing charging sessions 
requires information on human behaviors.

§ We conduct data analysis from EV charge-points in the Netherlands and in Switzerland to investigate 
how to quantify and predict available flexibility in real-world scenarios.
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How can we quantify and predict the flexibility?



[5] Bellizio, F., Dijkstra, B., Fertig, A., Van Dijk, J., & Heer, P. (2024). Machine Learning Approaches for the Prediction of Public EV Charge Point Flexibility. SSRN. DOI: https://dx.doi.org/10.2139/ssrn.4751908

§ Large dataset available: ~10,000 public CPs in the Netherlands, ~2.5 million charging sessions over
1 year

§ Flexibility ∆𝑓 = ∆𝐸 ×∆𝑡!"#$ with ∆𝑡%& =
∆(

)*+$
and ∆𝑡!"#$ = 𝑚𝑎𝑥{∆𝑡, − ∆𝑡%& , }0

§ Two informed data-driven approaches: CP cluster- and user-based approach
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Flexibility quantification

To predict:
§ Session duration (∆ts)
§ Energy consumption 

(∆E)



§ CP clusters: Hybrid, Work, Short-stay, Home
Ø XGBoost model per cluster

§ EV user archetypes
Ø Long short-term memory (LSTM) model per EV
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Machine leaning-based predictive models 

[3] G. Pareschi et al., “Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data,” Appl. Energy, vol. 275, p. 115318, Oct. 2020.



§ Input features:
Ø EVSE max power *
Ø EVSE average energy demand *
Ø EVSE average duration *
Ø Session starting hour *
Ø Day of week, month, year *
Ø Week of year
Ø Month of year
Ø Weekend or not
Ø Holiday or not
Ø Temperature, Precipitation, Humidity, Sunshine, Wind speed

(based on postal code)
Ø User moving mean, max and min of the target feature

§ Target features: Session energy demand and duration

EVSE related features

Session related features

Weather related features

User related features
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The training dataset



§ CP cluster-based approach
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The Dutch analysis: predictive performance

Accurate predictions of aggregated
flexibility à Relevant info to system
operators for planning and operation

§ User-based approach
Ø Fleet of 10 EVs sampled from user archetypes
Ø Training/Testing: 1/1/2022 – 31/7/2022
Ø Validation: 1-31/8/2022
Ø MAE: 2.6h à 21% improvement
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The Swiss analysis: charging data
§ Initial dataset:

Ø 9’511 EVSE IDs
Ø 1’048’575 sessions
Ø 2022/03/30 and 2024/04/11

§ Data-preprocessing: EVSE IDs with more than 30
sessions, sessions with energy [0.25, 150] kWh
and duration [0.25, 200] h, 22kW max power
Ø 4’444 EVSE IDs
Ø 466’905 sessions



§ Mean Absolute Error (MAE):
Ø Energy demand: 10.2 kWh
Ø Duration: 2.9h

§ Assumptions for calculation:
Ø Max power: 11kW
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The Swiss analysis: predictive performance
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The Swiss analysis: predictive performance



Techno-economic analysis of V2G profitability: 
The case of Switzerland
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Andersen, Daniel and Powell, Siobhan, Policy and Pricing Tools to Incentivize Distributed Electric 
Vehicle-to-Grid Charging Control. Available at SSRN: https://ssrn.com/abstract=4918051

https://ssrn.com/abstract=4918051


How can we access this flexibility?

• Great that we have so much flexibility potential! 

• But, accessing that flexibility depends on regulations, tariffs, costs, …

• While V1G is likely profitable, the literature is unclear on the techno-economics of V2G [6]
- High station costs 
- “Double taxation” of discharged energy, different than other forms of storage [7]
- Minimum aggregation levels to participate in markets [8]
- Other non-technical barriers [7]

We conduct a techno-economic analysis to understand the profitability of V2G in Switzerland and identify 
potential solutions for policymakers and regulators to support V2G deployment.
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[6] Sovacool, Benjamin K et al (2020). “Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review”. In: RSER 131, p. 109963.
[7] Gschwendtner, Christine et al (2021). “Vehicle-to-X (V2X) implementation: An overview of predominante trial configurations and technical, social and regulatory challenges”. In: RSER 145, p. 110977.
[8] Heilmann, C (2021). “Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications – A review and meta-analysis”. In: RSER 145, p. 111115. 
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Testing Policy and Regulation Impacts on V2G Profitability
Case Study: Workplace Aggregator

Aggregator Optimizes for Electricity Tariff

Key Assumptions:
• 80 kWh battery

• 11 kW workplace chargers

• 50 EVs for 25 chargers

• Re-run simulations 50 times 

• Drivers have access to home charging

• Travel data from MZMV [9]

• Optimization ensures the same total energy is delivered by 

departure as with uncontrolled

[9] BFS and ARE (2023). Mikrozensus Mobilität und Verkehr 2021. 



Tariffs and Charging Profiles



Minimum Spread Between Charging and Discharging Prices

a. Existing Tariff: per kWh prices

b. Existing Tariff: profiles

c. PV Tariff: per kWh prices

d. PV Tariff: profiles

a. Existing Tariff: per kWh prices

b. Existing Tariff: profiles

c. PV Tariff: per kWh prices

d. PV Tariff: profiles

Criteria for V2G:

Scenarios for Discharging Price:

• ‘Tracked Net’ network charge

• ‘Min Net’ network charge

• ‘Current Net’ network charge

• (No) tax reimbursed



Minimum Spread Between Charging and Discharging Prices

b. New PV Tariff

a. Existing EWZ Tariff



Regulation on “Double Taxation” vs. Station Subsidies

Variable Costs

Revenues

Fixed Costs

Station Cost

a. Existing EWZ Tariff

b. New PV Tariff



What is the Impact?
Estimated Impact on Curtailment and System Peak

The better tariff depends on the year and system. 



Conclusion
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Summary of Key Conclusions

Charging and Flexibility across space and time
1. Spatial and temporal trackability help us identify region and time-specific complementarities or 

mismatches that must be handled for successful transport and electricity sector integration.   

2. Geographical representativeness is crucial in planning for the future charging infrastructure and 
potential new flexibility markets. 

Flexibility quantification and prediction
1. Data-driven approaches result in conservative flexibility prediction compared to actual quantification.

2. Accounting for user-specific behaviors enhances the accuracy of flexibility predictions.

3. The highest EV flexibility is observed in the Zurich region.

Policies and utilization
1. Techno-economics may be challenging; station subsidies may be needed for some types of flexibility.

2. To incentivize V2G, regulations should remove “double taxation” and increase tariff price spreads.
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Questions?
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Maria, Federica and Siobhan
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PATHFNDR: www.sweet-pathfndr.ch

mailto:mparajele@ethz.ch
mailto:mparajele@ethz.ch
mailto:federica.bellizio@empa.ch
mailto:federica.bellizio@empa.ch
mailto:spowell@ethz.ch
http://www.sweet-pathfndr.ch/

