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Motivation

Transport demand is especially flexible due to its low active utilization (high percentage of time

parking), allowing for smart integration of transport and electricity sectors.

®)) Charging data is not
always available or
universally
representative:

Alternative modeling
approaches.

Quantifying and
predicting the available
flexibility is crucial to
fully exploit it:

Data-driven
approaches

®)) New policies and
regulations are needed
to fully access the
available flexibility

» We discuss our work towards modeling, validating, and accessing charging demand and flexibility

from the transport sector.
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Mobility-based quantification of
EV fleets charging power and flexibility



Modeling Work So Far:
From Agent-based Transport Simulations to Georeferenced Driving Energy Requirements

N

of parked Vs

Millions

2 =
1

o
o
1

Nationwide Transport
Simulation [1]

0.0 -

00:00 02:30 05:00 07:30 10:00 12:30 15:00 17:30 20:00 22:30
Hour

Daily distribution of parking location

by type

[1] A. Horni, K. Nagel, and K. Axhausen, Eds., Multi-Agent Transport Simulation MATSim. London: Ubiquity Press, Aug 2016.

Vehicle-specific Driving Energy Estimation [2]
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[2] M. Parajeles Herrera, M. Schwarz, and G. Hug, “Spatio-Temporal Modelling of Large-Scale BEV Fleets Charging Energy Needs and Flexibility” SEST 2024.
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Estimating Charging Power:

Base-Case Charging Profiles Formulation

Generation of weekly charging profiles

* Charging infrastructure considered widely available: 7-22 kW depending on parking

location.

* Charging decision subject to:
o SOE<X, X~N(u,o),

and additional heuristic considerations regarding:
= minimum battery level,

= enough energy for consecutive trips,
= equal start and end SOE.

Generation of yearly charging profiles
» Generation of charging profiles for each typical weather period.

+ Electrification percentages per year applied per municipality.
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» Tuncated normal distribution: (0.6, 0.2) [3]
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+ Distribution of typical
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[3] G. Pareschi et al., “Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data,” Appl. Energy, vol. 275, p. 115318, Oct. 2020.

[4] N. Zielonka, X. Wen, and E. Trutnevyte, “Probabilistic projections of granular energy technology diffusion at the subnational level,” PNAS Nexus, Sep. 2023.
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Estimating Charging Flexibility:
Power And Energy Flexibility Bounds Formulation

» Estimation of charging power and energy flexibility, with respect to the base case charging patterns, subject to:
* 1hour < tpqrking < 15 hours
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Estimating Charging Power and Flexibility:
Power And Energy Flexibility Nationwide Bounds
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power flexibility is estimated on an average of 1.28 GW, with a maximum of 2.6 GW.
power flexibility is estimated on an average of 0.5 GW, with a maximum of 1.7 GW.

* Increase of 16.5% of peak charging power on cold days with respect to warm days.

* 62% of energy charged during the week is flexible, whilst only 34% is flexible on weekends.
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Estimating Charging Power and Flexibility:
Power And Energy Flexibility Localized Bounds
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Outlook:

Integration into Energy Systems Models

Work in progress

Generation of geographic and time-specific charging
profiles, power, and energy flexibility bounds for 2030,
2040, and 2050.

Integration of the information into Nexus-e’s
optimization model:
‘Bounds differ in space and time

*Overnight charging flexibility captured by modeling
weekly charging patterns

Module implementation planned

Nexus-e: Loops and Interfaces
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Run updated simulations to study the use of the
flexibility available in the investment and operation
decisions at the transmission level.

Implementation of the transport electrification model as

a stand-alone module in Nexus-e:
 with varying underlying assumptions,

* and interaction with the distributed investment and

operation decisions.
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Flexibility quantification and prediction:
The Dutch and Swiss analysis



How can we quantify and predict the flexibility?

= Mobility-based modeling requires validating multiple assumptions about charging (human) behaviors

= EV mobility data are scarce, often not publicly available and owned by single operators, such as
charge-point (CP) operators

= Exploiting flexibility remains a challenge even when data is available, as managing charging sessions
requires information on human behaviors.

= \We conduct data analysis from EV charge-points in the Netherlands and in Switzerland to investigate
how to quantify and predict available flexibility in real-world scenarios.
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Flexibility quantification

= Large dataset available: ~10,000 public CPs in the Netherlands, ~2.5 million charging sessions over

1 year

AE
max

= FIGlelIlty Af = AE XAtflex with Atch = b and Atflex = ”max{AtS — Atch, O}

: To predict:
: = Session duration (Af;)
) = Energy consumption
. (AE)
’ Atey ! Atro g Time (hours)
tst tch tdep
"

= Two informed data-driven approaches: CP cluster- and user-based approach

[5] Bellizio, F., Dijkstra, B., Fertig, A., Van Dijk, J., & Heer, P. (2024). Machine Learning Approaches for the Prediction of Public EV Charge Point Flexibility. SSRN. DOI: https://dx.doi.org/10.2139/ssrn.. 4751908
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Machine leaning-based predictive models

= CP clusters: Hybrid, Work, Short-stay, Home
» XGBoost model per cluster
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= EV user archetypes
» Long short-term memory (LSTM) model per EV
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[3] G. Pareschi et al., “Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data,” Appl. Energy, vol. 275, p. 115318, Oct. 2020.
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The training dataset

= |nput features:

EVSE max power *

EVSE average energy demand *
EVSE average duration *
Session starting hour *

Day of week, month, year *
Week of year

Month of year

Weekend or not

Holiday or not |
Temperature, Precipitation, Humidity, Sunshine, Wind speed ]. Weather related features
(based on postal code)

> User moving mean, max and min of the target feature I User related features

EVSE related features

Session related features

VVVVVYVYYVYYVYYVYY

= Target features: Session energy demand and duration
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The Dutch analysis: predictive performance

= CP cluster-based approach

Cluster Aggregated model Cluster approach models
MAE | MSE | SMAPE (%) | MAE | MSE | SMAPE (%)
0 3.363 | 21.311 4872 [[3.320 | 21.181 50.06 |
2 3.812 | 26.476 48.17 3.806 | 25.992 50.12
2.933 | 17.511 50.18 2.809 | 17.101 51.47
5 3.119 | 18.466 46.25 3.100 | 18.618 48.27
6 3.602 | 23.228 47.03 3.641 | 23.685 49.22
3 | 2.088 | 8663 58.82| |[1572 | 7.955 46.51 |
10 3.826 | 27.224 51.00 3.789 | 26.389 52.92
9 || 2.340 | 9.977 5149 | || 2.074 | 9.508 48.68 |
20 3.017 | 18.099 48.60 2.869 | 17.670 49.44
13 4.117 | 29.489 47.75 4.119 | 28.549 49.95
Overall || 3.382 | 21.654 48.86 3.305 | 21.212 49.89

User-based approach
» Fleet of 10 EVs sampled from user archetypes
» Training/Testing: 1/1/2022 — 31/7/2022
» Validation: 1-31/8/2022
» MAE: 2.6h =2 21% improvement
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Density plot of Actual and Predicted Flexibility
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The Swiss analysis: charging data

= |nitial dataset:
» 9511 EVSE IDs
» 1'048'575 sessions
» 2022/03/30 and 2024/04/11

= Data-preprocessing: EVSE IDs with more than 30
sessions, sessions with energy [0.25, 150] kWh
and duration [0.25, 200] h, 22kW max power

» 4’444 EVSE IDs
» 466’905 sessions
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The Swiss analysis: predictive performance
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= Mean Absolute Error (MAE):
» Energy demand: 10.2 kWh
» Duration: 2.9h
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The Swiss analysis: predictive performance
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10000 s Actual === Predicted
9000 <
5 < 8000 )
2 - 8 9 < 7000 =
=. 6000 -
2 5000 GEJ
6 D 4000
7 R 3000 S
1 : =2 2000 3
L
1000 N
0
35 » Actual = Predicted
30 16000 o ACtU@| == Predicted
=)
; 25 = 14000 %
=z o = 12000 O
> 2 20 =, 10000 =
5 =15 2 8000 ..!G:’
% o
3 10 B 6000 c
L © 4000 ;
5 I L 2000
0 .- —— l- I- I. [ - l. 0
1 5 3 4 5 6 7 8 9 TPRRRABIBHINRISBSCRIABTING
Time [h]

PATHFNDR > 14.10.24




Techno-economic analysis of V2G profitability:
The case of Switzerland

Andersen, Daniel and Powell, Siobhan, Policy and Pricing Tools to Incentivize Distributed Electric
Vehicle-to-Grid Charging Control. Available at SSRN: https://ssrn.com/abstract=4918051



https://ssrn.com/abstract=4918051

How can we access this flexibility?

« Great that we have so much flexibility potential!
« But, accessing that flexibility depends on regulations, tariffs, costs, ...

« While V1G is likely profitable, the literature is unclear on the techno-economics of V2G [6]
— High station costs
— “Double taxation” of discharged energy, different than other forms of storage [7]
— Minimum aggregation levels to participate in markets [8]
— Other non-technical barriers [7]

We conduct a techno-economic analysis to understand the profitability of V2G in Switzerland and identify
potential solutions for policymakers and regulators to support V2G deployment.

[6] Sovacool, Benjamin K et al (2020). “Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review”. In: RSER 131, p. 109963.
[7] Gschwendtner, Christine et al (2021). “Vehicle-to-X (V2X) implementation: An overview of predominante trial configurations and technical, social and regulatory challenges”. In: RSER 145, p. 110977.
[8] Heilmann, C (2021). “Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications — A review and meta-analysis”. In: RSER 145, p. 111115.
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Testing Policy and Regulation Impacts on V2G Profitability

Case Study: Workplace Aggregator

Aggregator Optimizes for Electricity Tariff

Key Assumptions:
80 kWh battery
11 kW workplace chargers
50 EVs for 25 chargers
Re-run simulations 50 times
Drivers have access to home charging
Travel data from MZMV [9]

Optimization ensures the same total energy is delivered by

departure as with uncontrolled
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Tariffs and Charging Profiles

a. Tariffs
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b. Demand Profiles
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Minimum Spread Between Charging and Discharging Prices

Criteria for V2G:

1

—T
)

Tdis,max > ch,min

Scenarios for Discharging Price:

« ‘Tracked Net’ network charge
* ‘Min Net' network charge
« ‘Current Net’ network charge

* (No) tax reimbursed
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a. Existing Tariff: per kWh prices
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Minimum Spread Between Charging and Discharging Prices

a. Existing EWZ Tariff
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Regulation on “Double Taxation” vs. Station Subsidies

a. Existing EWZ Tariff
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Change in curtailment
vs. uncontrolled [kWh/station/year]

What is the Impact?

Estimated Impact on Curtailment and System Peak

c. Curtailment
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The better tariff depends on the year and system.
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d. Peak Net Demand
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Conclusion



Summary of Key Conclusions

Charging and Flexibility across space and time

1. Spatial and temporal trackability help us identify region and time-specific complementarities or
mismatches that must be handled for successful transport and electricity sector integration.

2. Geographical representativeness is crucial in planning for the future charging infrastructure and
potential new flexibility markets.

Flexibility quantification and prediction
1. Data-driven approaches result in conservative flexibility prediction compared to actual quantification.
2. Accounting for user-specific behaviors enhances the accuracy of flexibility predictions.

3. The highest EV flexibility is observed in the Zurich region.

Policies and utilization
1. Techno-economics may be challenging; station subsidies may be needed for some types of flexibility.

2. To incentivize V2G, regulations should remove “double taxation” and increase tariff price spreads.
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Questions?
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