Exploring EV charging patterns, flexibility potential, and grid impacts Federica Bellizio (Empa), Siobhan Powell & María Parajeles (ETH Zurich)

Agenda

- 1. Motivation
- 2. María Mobility-based quantification of EV fleets charging power and flexibility (10 min)
- 3. Federica *Flexibility quantification and prediction: The Dutch and Swiss analysis* (10 min)
- 4. Siobhan Techno-economic analysis of V2G profitability: The case of Switzerland (10 min)
- 5. Conclusion
- 6. Questions and answers

(15 min)

PATHENDR

Motivation

• **Transport demand** is especially **flexible** due to its low active utilization (high percentage of time parking), allowing for **smart integration of transport and electricity sectors**.

• We discuss our work towards **modeling**, **validating**, **and accessing** charging demand and flexibility from the transport sector.

Mobility-based quantification of EV fleets charging power and flexibility

Modeling Work So Far: From Agent-based Transport Simulations to Georeferenced Driving Energy Requirements

Extend to weekly mobility and energy needs patterns using open statistical data

[1] A. Horni, K. Nagel, and K. Axhausen, Eds., Multi-Agent Transport Simulation MATSim. London: Ubiquity Press, Aug 2016.

[2] M. Parajeles Herrera, M. Schwarz, and G. Hug, "Spatio-Temporal Modelling of Large-Scale BEV Fleets Charging Energy Needs and Flexibility" SEST 2024.

Estimating Charging Power: Base-Case Charging Profiles Formulation

• Electrification percentages per year applied per municipality.

[3] G. Pareschi et al., "Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data," *Appl. Energy*, vol. 275, p. 115318, Oct. 2020.
 [4] N. Zielonka, X. Wen, and E. Trutnevyte, "Probabilistic projections of granular energy technology diffusion at the subnational level," PNAS Nexus, Sep. 2023.

Estimating Charging Flexibility: Power And Energy Flexibility Bounds Formulation

• Estimation of charging power and energy flexibility, with respect to the base case charging patterns, subject to:

- $1 hour \le t_{parking} \le 15 hours$
- t_{parking} > t_{charging}
 SOC_{final, without flexibility} = SOC_{final, with flexibility}

•
$$E_{flexible} = \begin{cases} (t_{chg.\,end} - t_{pkg.\,start}) \cdot P_{chg.} , if \ t_{parking} \ge 2 \cdot t_{charging} \\ (t_{chg.\,end} - t_{flex.\,max}) \cdot P_{chg.} , if \ t_{parking} < 2 \cdot t_{charging} \end{cases}$$

Estimating Charging Power and Flexibility: Power And Energy Flexibility Nationwide Bounds

- Upwards power flexibility is estimated on an average of 1.28 GW, with a maximum of 2.6 GW.
- **Downwards** power flexibility is estimated on an average of 0.5 GW, with a maximum of 1.7 GW.
- Increase of 16.5% of peak charging power on cold days with respect to warm days.
- 62% of energy charged during the week is flexible, whilst only 34% is flexible on weekends.

PATHFNDR _____

Estimating Charging Power and Flexibility: Power And Energy Flexibility Localized Bounds

🗖 Urban 🔲 Periurban 🔤 Rural

Charging power and flexibility bounds for area **87 (mostly urban)**

Charging power and flexibility bounds for area **317 (mostly rural)**

Outlook: Integration into Energy Systems Models

PATHENDR

Flexibility quantification and prediction: The Dutch and Swiss analysis

How can we quantify and predict the flexibility?

- Mobility-based modeling requires validating multiple assumptions about charging (human) behaviors
- EV mobility data are scarce, often not publicly available and owned by single operators, such as charge-point (CP) operators
- Exploiting flexibility remains a challenge even when data is available, as managing charging sessions requires information on human behaviors.
- We conduct data analysis from EV charge-points in the Netherlands and in Switzerland to investigate how to quantify and predict available flexibility in real-world scenarios.

Flexibility quantification

 Large dataset available: ~10,000 public CPs in the Netherlands, ~2.5 million charging sessions over 1 year

• Flexibility
$$\Delta f = \Delta E \times \Delta t_{flex}$$
 with $\Delta t_{ch} = \frac{\Delta E}{Pmax}$ and $\Delta t_{flex} = max \{\Delta t_s - \Delta t_{ch}, 0\}$

• Two informed data-driven approaches: CP cluster- and user-based approach

[5] Bellizio, F., Dijkstra, B., Fertig, A., Van Dijk, J., & Heer, P. (2024). Machine Learning Approaches for the Prediction of Public EV Charge Point Flexibility. SSRN. DOI: https://dx.doi.org/10.2139/ssrn.4751908

Machine leaning-based predictive models

CP clusters: Hybrid, Work, Short-stay, Home
 XGBoost model per cluster

EV user archetypes

PATHFNDR

Long short-term memory (LSTM) model per EV

[3] G. Pareschi et al., "Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data," Appl. Energy, vol. 275, p. 115318, Oct. 2020.

The training dataset

PATHFNDR

 Input features: EVSE max power * EVSE average energy demand * EVSE average duration * 	EVSE relat	ed f	eatures
 Session starting hour * Day of week, month, year * Week of year Month of year Weekend or not Holiday or not 	Session re	lated	d features
 Temperature, Precipitation, Humidity, Sunshine, (based on postal code) User moving mean, max and min of the target feature 	Wind speed re	} }	Weather related features User related features

Target features: Session energy demand and duration

The Dutch analysis: predictive performance

CP cluster-based approach

Cluster	Aggregated model			Cluster approach models			
	MAE	MSE	SMAPE (%)	MAE	MSE	SMAPE (%)	
0	3.363	21.311	48.72	3.320	21.181	50.06	
2	3.812	26.476	48.17	3.806	25.992	50.12	
7	2.933	17.511	50.18	2.809	17.101	51.47	
5	3.119	18.466	46.25	3.100	18.618	48.27	
6	3.602	23.228	47.03	3.641	23.685	49.22	
3	2.088	8.663	58.82	1.572	7.255	46.51	
10	3.826	27.224	51.00	3.789	26.389	52.92	
9	2.340	9.977	51.49	2.074	9.508	48.68	
20	3.017	18.099	48.60	2.869	17.670	49.44	
13	4.117	29.489	47.75	4.119	28.549	49.95	
Overall	3.382	21.654	48.86	3.305	21.212	49.89	

Accurate predictions of aggregated flexibility \rightarrow Relevant info to system operators for planning and operation

User-based approach

PATHENDR

- Fleet of 10 EVs sampled from user archetypes
- Training/Testing: 1/1/2022 31/7/2022
- > Validation: 1-31/8/2022
- > MAE: 2.6h \rightarrow 21% improvement

The Swiss analysis: charging data

Initial dataset:

PATHENDR

- > 9'511 EVSE IDs
- > 1'048'575 sessions
- 2022/03/30 and 2024/04/11
- Data-preprocessing: EVSE IDs with more than 30 sessions, sessions with energy [0.25, 150] kWh and duration [0.25, 200] h, 22kW max power
 - > 4'444 EVSE IDs
 - 466'905 sessions

The Swiss analysis: predictive performance

PATHFNDR

The Swiss analysis: predictive performance

Techno-economic analysis of V2G profitability: The case of Switzerland

Andersen, Daniel and Powell, Siobhan, Policy and Pricing Tools to Incentivize Distributed Electric Vehicle-to-Grid Charging Control. Available at SSRN: <u>https://ssrn.com/abstract=4918051</u>

How can we access this flexibility?

- Great that we have so much flexibility potential!
- But, accessing that flexibility depends on regulations, tariffs, costs, ...
- While V1G is likely profitable, the literature is unclear on the techno-economics of V2G [6]
 - High station costs
 - "Double taxation" of discharged energy, different than other forms of storage [7]
 - Minimum aggregation levels to participate in markets [8]
 - Other non-technical barriers [7]

We conduct a techno-economic analysis to understand the profitability of V2G in Switzerland and identify potential solutions for policymakers and regulators to support V2G deployment.

[6] Sovacool, Benjamin K et al (2020). "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review". In: RSER 131, p. 109963.
[7] Gschwendtner, Christine et al (2021). "Vehicle-to-X (V2X) implementation: An overview of predominante trial configurations and technical, social and regulatory challenges". In: RSER 145, p. 110977.
[8] Heilmann, C (2021). "Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications – A review and meta-analysis". In: RSER 145, p. 111115.

PATHFNDR _____

Testing Policy and Regulation Impacts on V2G Profitability Case Study: Workplace Aggregator

Aggregator Optimizes for Electricity Tariff

Key Assumptions:

- 80 kWh battery
- 11 kW workplace chargers
- 50 EVs for 25 chargers
- Re-run simulations 50 times
- Drivers have access to home charging
- Travel data from MZMV [9]
- Optimization ensures the same total energy is delivered by departure as with uncontrolled

PATHFNDR

Tariffs and Charging Profiles

Minimum Spread Between Charging and Discharging Prices

Criteria for V2G:

$$T_{dis,max} > \frac{1}{\eta^2} T_{ch,min}$$

Scenarios for Discharging Price:

- 'Tracked Net' network charge
- 'Min Net' network charge
- 'Current Net' network charge
- (No) tax reimbursed

PATHENDR

Minimum Spread Between Charging and Discharging Prices

a. Existing EWZ Tariff

PATHFNDR

Regulation on "Double Taxation" vs. Station Subsidies

a. Existing EWZ Tariff

What is the Impact? Estimated Impact on Curtailment and System Peak

The better tariff depends on the year and system.

PATHFNDR

Conclusion

Summary of Key Conclusions

Charging and Flexibility across space and time

- 1. Spatial and temporal trackability help us identify region and time-specific complementarities or mismatches that must be handled for successful transport and electricity sector integration.
- 2. Geographical representativeness is crucial in planning for the future charging infrastructure and potential new flexibility markets.

Flexibility quantification and prediction

- 1. Data-driven approaches result in conservative flexibility prediction compared to actual quantification.
- 2. Accounting for user-specific behaviors enhances the accuracy of flexibility predictions.
- 3. The highest EV flexibility is observed in the Zurich region.

Policies and utilization

- 1. Techno-economics may be challenging; station subsidies may be needed for some types of flexibility.
- 2. To incentivize V2G, regulations should remove "double taxation" and increase tariff price spreads.

PATHFNDR _____

Acknowledgements

Funding

- The research was conducted under the 'PATHFNDR' project, led by the ETH Zurich with the Empa, PSI, ZHAW, HSLU, UNIGE, EPFL, and TU Delft. PATHFNDR is a SWEET consortium project supported by the Swiss Federal Office of Energy.
- Siobhan Powell acknowledges support from an ETH Postdoctoral Fellowship.
- Federica Bellizio acknowledges support from SWEET PATHFNDR project.
- María Parajeles acknowledges support from SWEET EDGE project.

Other Input and Guidance

- Luca Castiglioni from the Swiss Federal Office of Energy
- Corinne Häberling from Energie 360, Jules Van Dijk and Bart Dijkstra from TotalEnergies.
- Institute for transport planning and systems (IVT) at ETH.
- Team at SusTec, PSL, UESL, and the ESC

PATHFNDR _____

Questions?

Maria, Federica and Siobhan <u>mparajele@ethz.ch</u>, <u>federica.bellizio@empa.ch</u>, <u>spowell@ethz.ch</u>.

PATHFNDR: www.sweet-pathfndr.ch

