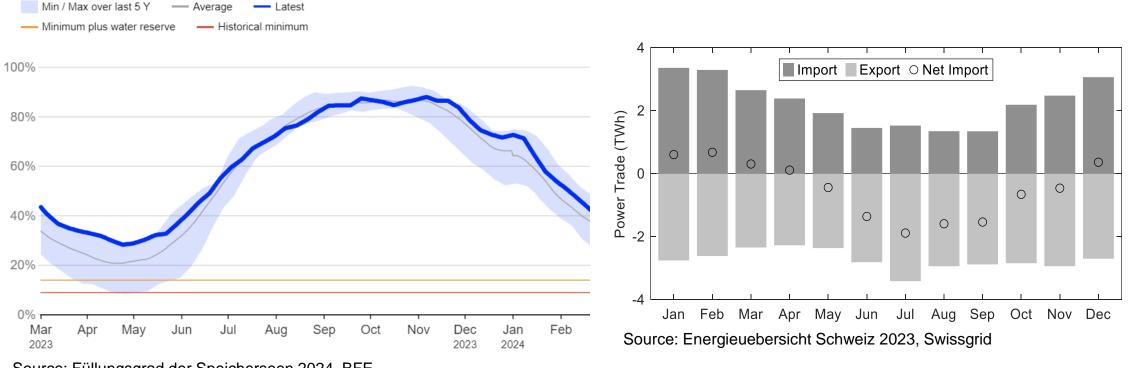
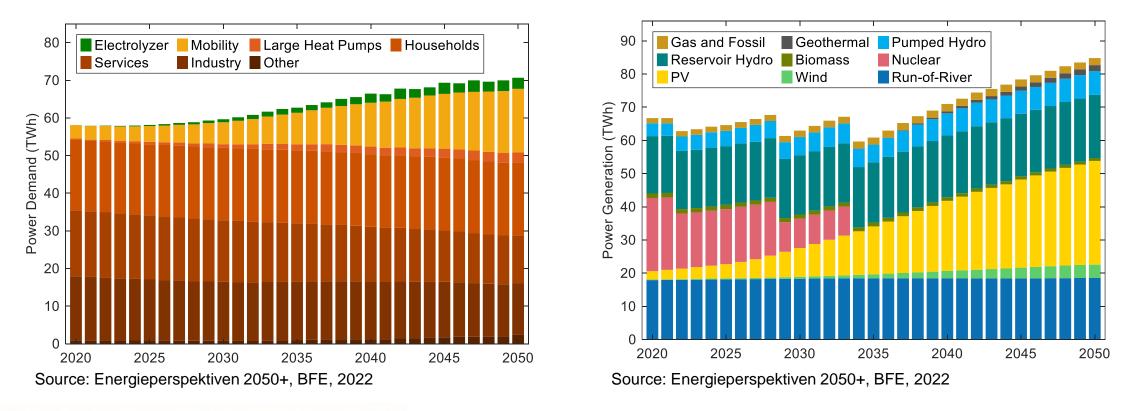
Flexibility provision in the Swiss integrated power, hydrogen, and methane infrastructure


Behnam Akbari (ETH Zurich) 13 March 2024

Swiss power system will need additional flexibility

• Today's seasonal supply-demand mismatch is balanced by hydropower and power trade.



Source: Füllungsgrad der Speicherseen 2024, BFE

2

Swiss power system will need additional flexibility

- Today's seasonal supply-demand mismatch is balanced by hydropower and power trade.
- Electrified heating and mobility worsen the winter deficit.
- Nuclear phase-out and PV buildout heighten seasonal and intraday imbalance.

PATHFNDR —

3

Various flexible resources

Storage

Reservoir and pumped hydro Fuel storage, e.g., methane, hydrogen Batteries

Renewables with high winter yield

Alpine PV Wind

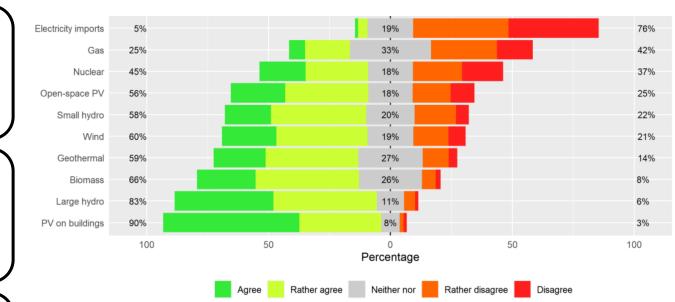
Sector coupling

Power generation from gaseous fuels

Power-to-gas

Demand flexibility Demand shifting, e.g., electric mobility and

heating


Price elasticity

PATHENDR

Power trade: low acceptance in Switzerland Fuel imports: Uncertain availability and price

Source: Population Survey, EDGE Highlights Report Year 2, 2023

Research scope

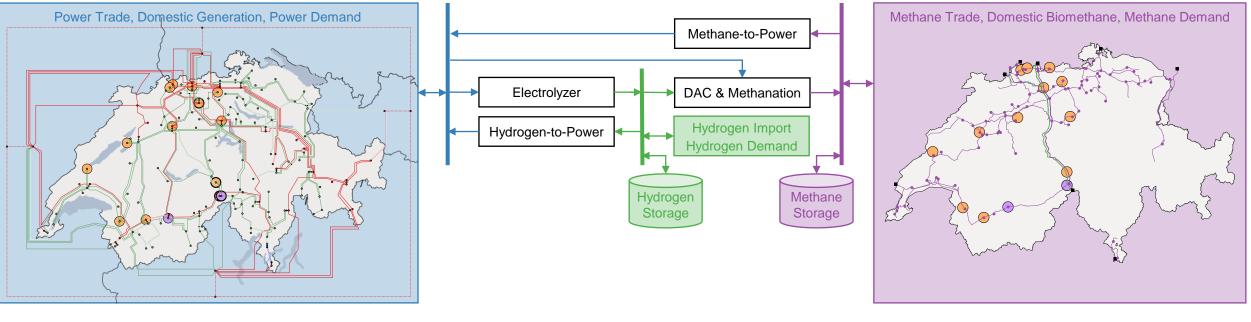
- **Q1:** What is a cost-effective portfolio considering flexibility needs across time scales?
- Q2: What are infrastructure needs under stringent energy trades, i.e., limited power trades and fuel embargos?

Objective: Examine flexibility provision across intraday to seasonal time scales

in the sector-coupled Swiss energy system under various energy trade scenarios

- We¹ address research gaps using
 - high spatiotemporal resolution
 - thorough flexibility representation.

¹ Akbari *et al.*, Working Paper


Energy system planning methodology

- Operations under reference energy trades
- Impact of stringent energy trades on investments and operations
- Role of hydrogen and methane technologies across various trade scenarios
- Conclusions and outlook

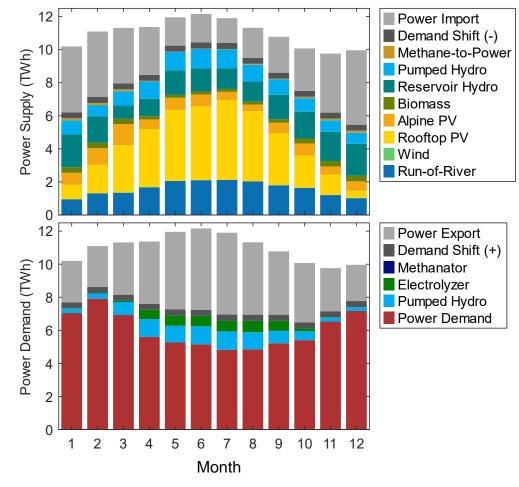
Energy system planning methodology

Investment and hourly operations optimization in 2050

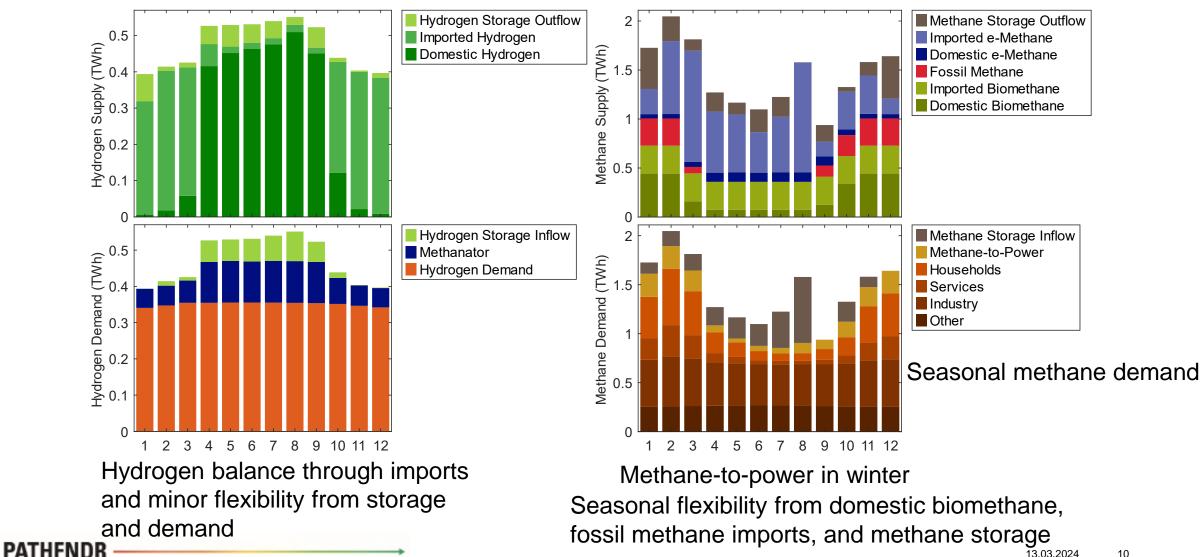
- Swiss power transmission network and aggregated neighboring countries, modeled in Nexus-e¹
- Swiss gas transmission network, modeled in GasNet²
- PtGtP³ technologies and gaseous storages (i.e., tanks and caverns)

¹ Gjorgiev et al., 2022

² Akbari et al., 2023


³ Power-to-Gas-to-Power

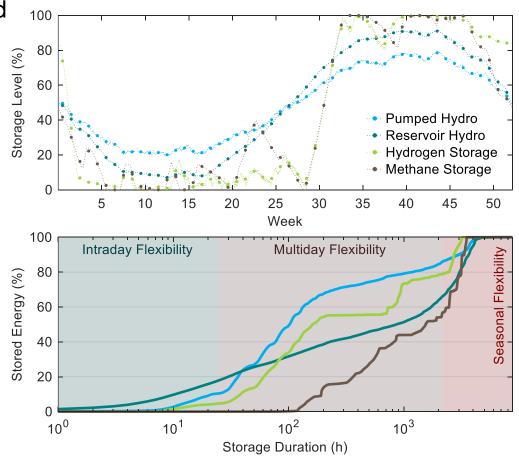
- Energy system planning methodology
- Operations under reference energy trades
- Impact of stringent energy trades on investments and operations
- Role of hydrogen and methane technologies across various trade scenarios
- Conclusions and outlook


Power flexibility drivers and providers

- Seasonality of PV, run-of-river, and power demand
- Power supply from reservoir hydro, alpine PV, biomass, and methane-to-power concentrated in winter
- Pumped hydro and electrolyzers absorbing excess power in summer
- Intraday flexibility from demand shifting throughout the year
- Net imports in winter and net exports in summer

PATHENDR

Seasonality propagation across sectors



Power-to-gas in summer

13.03.2024 10

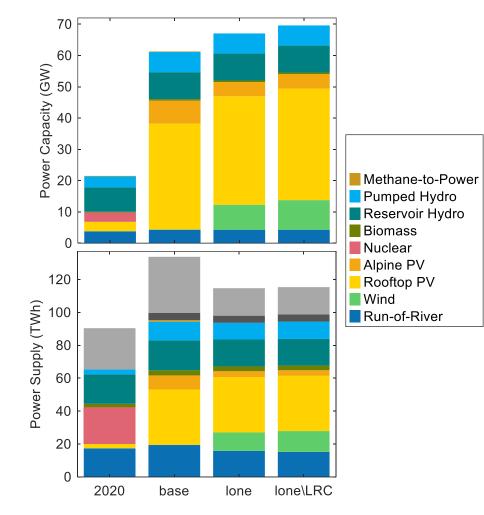
Flexibility from storages across time scales

- Hydro and gaseous storages operate seasonally, with min and max levels in March and October.
- Pumped hydro and hydrogen storage with average storage durations of 29-36 days mainly provide multiday flexibility driven by variable renewable energy generation.
- Reservoir hydro has an average storage duration of 59 days, mainly driven by power demand fluctuations.
- Methane storage has an average storage duration of 70 days, a driven by fluctuations in methane demand and e-methane import price.

- Energy system planning methodology
- Operations under reference energy trades
- Impact of stringent energy trades on investments and operations
- Role of hydrogen and methane technologies across various trade scenarios
- Conclusions and outlook

Scenarios

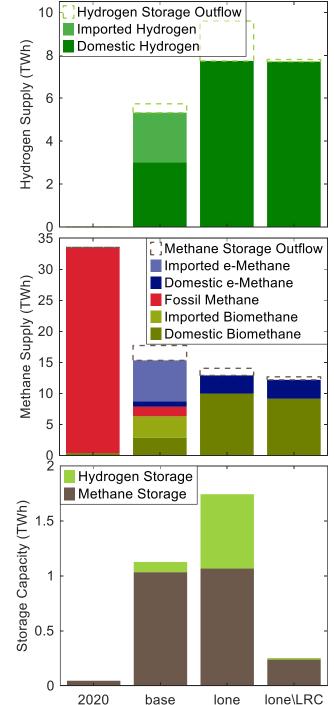
Scenario	Power NTC ¹	Fuel Import	Gaseous Storage
2020	99%	Fossil, nuclear	Only existing
base	100%	Fossil, renewable	Tank, cavern
lone	30%	Not allowed	Tank, cavern
Ione\LRC ²	30%	Not allowed	Tank


¹ Net transfer capacity

² Lined rock cavern

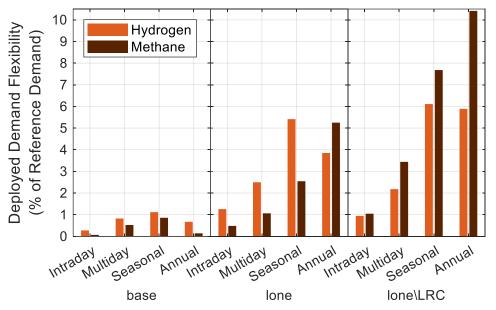
Limited power trade requires additional renewable capacity

- 6.7-to-8.0-fold expansion of variable renewable energies (VREs), i.e., PV, wind, and run-of-river, between 2020 and 2050
- Limited power trade favors winter-focused wind generation, increasing the wind capacity up to 9.5 GW.
- Higher VRE capacity under limited power export increases VRE curtailment from 7% to 14-17%.
- Domestic electricity-based fuels are too costly for power generation.


PATHEND

Fuel embargo drives domestic production

- Emerging hydrogen demand in 2050 requires imports and domestic production.
- Trade limitations favor electrolyzers running on excess power in summer.
- Emission limits in 2050 slash fossil methane imports.
- Fuel embargo boosts domestic biomethane and e-methane.
- Up to 1.7 TWh of cavern storage ensure winter gas supply in 2050.
- Excluding caverns reduces gaseous storage to 0.2 TWh.


PATHENDE

Fuel embargo drives demand flexibility deployment

- Hydrogen and methane demands contribute <1.1% to flexibility under reference energy trades.
- Fuel embargo reduces demand especially in winter, raising the seasonal and annual flexibility to 2.5%-5.4%.
- Without cavern storage, flexibility deployment rises to 5.9%-10.4%.

PATHENDR

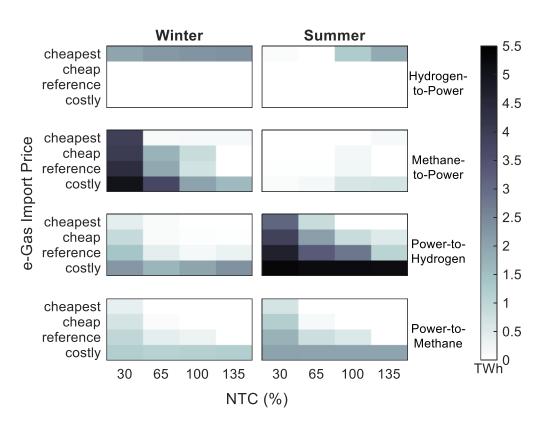
- Energy system planning methodology
- Operations under reference energy trades
- Impact of stringent energy trades on investments and operations
- Role of hydrogen and methane technologies across various trade scenarios
- Conclusions and outlook

Trade scenarios

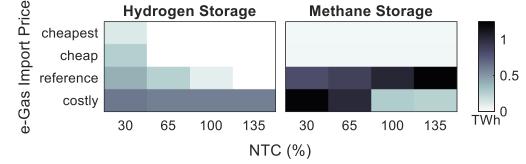
PATHFNDR

		Hydrogen (€/MWh)	e-Methane (€/MWh)
	cheapest	45.0	65.0
	cheap	82.6	111.7
-	reference	120.1	158.3
	costly	157.7	205.0

e-Gas Import Price


NTC (%)

PtGtP conversion hinges on trade conditions


- Hydrogen-to-power supplying power demand in winter for hydrogen import prices below 70 €/MWh
- Methane-to-power contributing to winter power supply under restricted power imports
- Power-to-hydrogen using excess power in summer under limited power exports to displace costly hydrogen imports
- Power-to-methane sees maximal use under limited power exports and costly e-methane imports

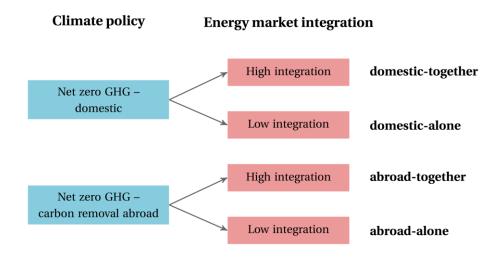
PATHEND

Little gaseous storage under cheap fuel imports

- Up to 0.6 TWh of hydrogen storage to avoid costly hydrogen imports in winter
- Up to 1.2 TWh of methane storage to leverage the seasonal price spread for e-methane import prices above 150 €/MWh
- Due to cost reasons, methane storage preferred over hydrogen storage in the power-to-methane pathway

- Energy system planning methodology
- Operations under reference energy trades
- Impact of stringent energy trades on investments and operations
- Role of hydrogen and methane technologies across various trade scenarios
- Conclusions and outlook

Conclusions


	Base	Lone
 Significant capacity expansion of PV, wind, run-of-river by 2050 	6.7-fold	7.6-fold
 Limited power exports increase variable renewable curtailment. 	7%	14%
 Power-to-gas can run on excess power in summer. 	4.2 TWh _e /y	10.8 TWh _e /y
 Gas turbines burn <u>imported</u> fuels to supply power in winter. 	0.9 TWh _e /y	0 TWh _e /y
 Fuel embargo reduces final gas demand in winter. 	17.8 TWh _{th} /y	17.0 TWh _{th} /y (-4.7%)
 Fuel embargo favors gaseous storage. 	1.1 TWh _{th}	1.7 TWh _{th}
 Fuel embargo prolongs gaseous storage duration. 	36-70 days	69-182 days

- Geological viability of caverns guide storage and power-to-gas placement.
- Power network constraints and net transfer capacities guide the placement of power generation, power-togas, and network expansion.

THFNDR				_
	THFNDR	rhfndr ———	THFNDR ————	THFNDR —————

Outlook

• Further alignment with CROSS scenarios and values

- Use Euro-Calliope to obtain boundary conditions, e.g., Swiss energy demands, power generation portfolio in neighboring countries
- Conduct sensitivity analysis with respect to impactful parameters

PATHFNDR

Giovanni Sansavini Reliability and Risk Engineering

Behnam Akbari Reliability and Risk Engineering

Jared Garrison Research Center for Energy Networks

Elena Raycheva Energy Science Center

HOCHSCHULE LUZERN

This work was performed by the PATHFNDR consortium, which is sponsored by the Swiss Federal Office of Energy's SWEET programme.

> Behnam Akbari **Doctoral Student** bakbari@ethz.ch

ETH Zurich **Reliability and Risk Engineering** www.rre.ethz.ch

PATHFNDR www.sweet-pathfndr.ch