

PATHFNDR Workshop 2022

Posters

PATHFNDR WORKSHOP

List of posters Version 12.09.2022

#	Last name	First name	Institution	PI	Title	Торіс
1	Marcucci	Adriana	ETH Zurich	Schaffner	SWEET CROSS	Overall
2	Ruefenacht	Lea	ETH Zurich	Bardow / Schaffner	PATHFNDR project overview	Overall
3	Marcucci	Adriana	ETH Zurich	Pfenninger	PATHFNDR scenarios	National scenarios
4	Vulic	Natasa	Empa	Rüdisüli	Flexibility potentials across Europe	National scenarios
5	Schwarz	Marius	ETH Zurich	Schaffner	How dependent is the Swiss energy transition on developments abroad?	National scenarios
6	Schlecht	Ingmar	ZHAW	Schlecht	Storage reserve for Switzerland. Is it necessary and (how) could it work?	National scenarios
7	Baader	Florian	ETH Zurich	Bardow	Integrating scheduling of multi-energy systems and industrial processes	National scenarios
8	Ludger	Leenders	ETH Zurich	Bardow	Integration of detailed electricity grid and sector-coupled energy system models: Nexus-e engages with SecMOD	National scenarios
9	Sanvito	Francesco	TU Delft	Pfenninger	Euro-Calliope and integration of smart charging mechanisms into Calliope framework	National scenarios
10	Wang	Zongfei	UNIGE	Trutnevyte	Electric vehicles in a spatial-explicit EXPANSE electricity system model	National scenarios
11	Patricia	Mayer	ETH Zurich	Bardow	Transition paths towards a CO2-Based chemical industry within a sector-coupled energy system	National scenarios
12	Christof	Knoeri	ETH Zurich	Hoffmann	Cyber-physical platforms: conceptual foundations and empirical case study	National scenarios
13	Christof	Knoeri	ETH Zurich	Hoffmann	Cross-sectoral collaboration for a green hydrogen value chain	Hydrogen
14	Ganter	Alissa	ETH Zurich	Sansavini	Optimal design of hydrogen supply chains to decarbonize hard- to-abate industrial sectors in Europe	Hydrogen
15	Peter	Christian	PSI	Peter	PSI's Energy System Integration Platform (ESI)	Hydrogen
16	Peter	Christian	PSI	Peter	Model development for advanced control algorithms	Hydrogen
17	Evrenosoglu	Yaman	ETH Zurich	Marinakis / Demiray	Planning and operation of multi-energy systems	Flexibility and sector coupling
18	Massimo	Fiorentini	Empa	Fiorentini	Optimal integration of Borehole Thermal Storage in district heating and cooling networks	Flexibility and sector coupling
19	Lucas	Edward	HSLU		Model development of integrated systems	Flexibility and sector coupling
20	Linder	Esther	HSLU	Schütz / Villasmil	Estimating heat demand of residential buildings	Flexibility and sector coupling
21	Koirala	Binod	Empa	Koirala	Flexibility assessment of e-mobility in multi-energy districts	Flexibility and sector coupling
22	Gupta	Rahul	EPFL	Paolone	Modelling and control of multi-energy systems in a microgrid	Flexibility and sector coupling
23	Gupta	Rahul	EPFL	Paolone	Coordinated multi-grid dispatch framework	Flexibility and sector coupling
24	Winzer	Christian	ZHAW	Winzer	Network tariffs for flexible loads	Flexibility and sector coupling

The PATHFNDR consortium

Pathways to an efficient future energy system through flexibility and sector coupling (2021-2027)

In line with the national vision of net-zero GHG emissions PATHFNDR imagines an efficient, flexible, resilient, costeffective, and sustainable Swiss energy system by 2050. Within this future, the main goal of PATHFNDR is to develop and analyze energy transition pathways for renewable energy integration in Switzerland.

Expected outcomes

Main objectives

Analysis of **technologies** from multiple **energy sectors** (thermal, electrical and gas)

WP 4 & 5 (P&D)

Implementation of **pilot & demonstration projects** to test market designs and technologies

Management of project activities and results, and **KTT** to the various stakeholders

WP 10

WP 8 & 9

Coordination of **scenarios** as well as **integration and synthesis** of research results

CONTACT

Lea A. Ruefenacht ETH Zurich Energy Science Center lea.ruefenacht@esc.ethz.ch www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

CROSS

SWEET-CROSS

CooRdination Of Scenarios and Data in SWEET

What is CROSS?

CROSS is an activity of the Swiss Federal Office of Energy's "SWEET" programme that aims at:

- **increasing comparability** of the simulations and
- incresing credibility of the results
 from the simulations from the SWEET consortia
 DeCarbCH, EDGE, PATHFNDR and SURE

CROSSDat

Platform with unified access to SWEET and **energy** related (research) data, **irrespective of where it is stored and curated**.

Features

- 1. It is both a metabase and a database
- 2. CROSSDat uses Frictionless standards for data packages and metadata
- 3. CROSSDat principles: Unified data access, Distributed research data management, Findable, Accessible, Interoperable, Reusable

CROSS Scenarios

- Scenarios are **alternative developments** of the future energy system
- CROSS scenarios are defined along two dimensions: Climate policy and energy market integration

V CROSS assumptions

High

Harmonization of uncertain drivers, including, socioeconomic development, demands, global climate change and resources

1. Population

2. Demands

3. Global climate change

38.4

ACKNOWLEDMENTS

This work was sponsored by the Swiss Federal Office of Energy's "SWEET" programme and performed by the CROSS activity.

88

15

PATHFNDR scenarios

Work package 1

Adriana Marcucci¹, Mahendranath Ramakrishnan², Francesco Sanvito², Stefan Pfenninger²

¹ Energy Science Center, ETH Zurich, Zurich, Switzerland

² Faculty of Technology, Policy and Management (TPM), Delft University of Technology, Delft, the Netherlands

What are PATHFNDR scenarios?

- Scenarios are alternative developments of the future energy system
- Quantifying these scenarios helps us with understanding the role of ٠ flexibility and sector coupling in achieving the Swiss net zero GHG goal

Scenario dimensions

PATHFNDR scenarios are defined along 3 dimensions on which Swiss citizens and policymakers can exert direct influence

Uncertain drivers

· Uncertainties: Affect the energy system directly or indirectly

4. Resources: Hydropower, solar, wind, biomass, etc.

Climate policy dimension: Net zero GHG target

Energy market integration dimension

Degree of self-sufficiency for different commodities

	Electricity	Biofuels and biomass	Hydrogen
Low integration	30% net transfer capacity	No imports	No imports
Moderate integration	100% net transfer capacity	56 PJ by 2050 from EP2050+ [1]	Upper limit from EP2050+ [1]

Social acceptance dimension

Public acceptance of new infrastructure					Willingness to change consumption		
Renewable potentials (TWh/a)					patterns	Time by wh	lich use
	Hydro- Solar Wind				can be shifted		
		power				Appliances	Vehicle
	Inflexible	34.8	30	1.7			charging
	Flexible	38.4	88.2	15	Inflexible	0	0
					Flexible	24 hours	72 hours

Ρ

ATHFNDR Scenarios – Europe		Scenarios' descriptions		
Import of fuels from outside Europe	a) No fuel imports allowed.b) Fuel imports are allowed but available sc) Fuel imports are allowed but available s	 a) No fuel imports allowed. b) Fuel imports are allowed but available starting from 2035 [2]. c) Fuel imports are allowed but available starting from 2045 [2]. a) No electricity imports allowed outside Europe. b) Electricity imports are allowed but available starting from 2035. c) Electricity imports are allowed but available starting from 2045. 		
Import of electricity from outside Europe	 a) No electricity imports allowed outside E b) Electricity imports are allowed but avail c) Electricity imports are allowed but avail 			

CO2 compensation abroad (within Europe)

Interconnections between European countries

Continent-scale hydrogen transport

Actions of neighbouring countries of Switzerland

a) Allowed to sequester emissions abroad within Europe b) Net-zero emissions carbon budgets are imposed on each country.

a) Restrict the transmission networks according to development plans' levels at different points in time (now, 2030, 2045, etc.) [3].

b) No transmission constraints.

- a) Restrict the availability of hydrogen transport to European Hydrogen Backbone's projections [4].
- b) No hydrogen transport capacity constraints.
- a) No asymmetry in European countries' behaviours.
- Germany divergent. E.g.: Germany depends on massive hydrogen imports from b) outside Europe.
- France goes rogue: France, for example, could go for a nuclear renaissance. c)

Additional sensitivity analyses and scanning of alternative configurations with different flexibility options will be performed.

sweet with every tank

REFERENCES

[1] BFE, 2020. Energieperspektiven 2050+. [2] van der Zwaan et al. 2021. [3] EC, REPowerEU, Fit for 55, Electricity interconnection targets [4] EHB. 2022, European Hydrogen Backbone report

CONTACT

Adriana Marcucci, ETH Zurich, adriana.marcucci@esc.ethz.ch Mahendranath Ramakrishnan, TU Delft, M.Ramakrishnan@tudelft.nl Francesco Sanvito, TU Delft, F.Sanvito@tudelft.nl Stefan Pfenninger, TU Delft, S.Pfenninger@tudelft.nl

www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

Flexibility potentials across Europe

WORK PACKAGE 1 (Task 2)

Natasa Vulic¹, Martin Rüdisüli¹

¹Urban Energy Systems Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, Switzerland

1 OBJECTIVES

The use of flexibility in terms of seasonal energy storage and demand shifting will play a vital role in the future European energy system that mainly relies on intermitted and stochastic renewable generation from solar and wind.

The flexibility options include power-to-X (hydrogen, methane, heat, etc) and demand side management (DSM). While DMS mainly relies on the share of energy demands that can be shifted within short-terms (hours to days), powerto-X needs seasonal storage capacities such as salt caverns, etc. for gaseous energy carriers such as methane or hydrogen. Moreover, for renewable carbonbased energy carrier (i.e., methane) nearby CO2 sources are required for economically viable operation.

2 CONTRIBUTION TO PATHFDNR

The flexibility options found here are used as inputs in the Euro-Calliope model for the modelling of scenarios at the European scale.

Due to the high spatial (NUTS-3) and temporal (hourly) resolution of the Euro-Calliope model, all parameters of these flexibility options need to be at this spatial and temporal granularly, too.

Results from the modelling at the European scale will then be used as inputs for NEXUS-E to model the Swiss energy system in detail.

2 METHODOLOGY

- Existing data flexibility options at the European Scale from past projects (e.g. CO2SToP, etc.) are gathered
- · The gathered data is assessed with respect to its applicability as inputs for the Euro-Calliope model
- With GIS this data is aggregated and converted to the required spatial and temporal granularity of the Euro-Calliope model
- Results from Euro-Calliope model runs are used as feedbacks to improve the quality of input data for successive runs

high spatial resolution

existing gas storage and transport infrastructure

REFERENCES

1 Poulsen, N.E., Bocin-Dumitriu, A., Holloway, S., Kirk, K., Neele, F. and Smith, N., 2015: Reserves and resources for CO2 storage in Europe: the CO2StoP project, Geological Survey of Denmark and Greenland Bulletin 33: 85-882. 2 Caglayan, D. G., Weber, N., Heinrichs, H. U., Linßen, J., Robinius, M., Kukla, P. A., & Stolten, D. (2020). Technical potential of salt caverns for hydrogen storage in Europe. International Journal of Hydrogen Energy, 45(11). 3 PyPSA-Eur-Sec: A Sector-Coupled Open Optimisation Model of the European Energy System. Hydrogen potential data.

CONTACT

Natasa Vulic Empa Urban Energy Systems Phone: +41 058 765 61 11 natasa.vulic@empa.ch www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

ENERGY & PROCESS SYSTEMS ENGINEERING

RRE Reliability and Risk Engineering

Work package 1 How dependent is the Swiss energy transition on developments abroad?

Marius Schwarz¹, Pranjal Jain¹, Arijit Upadhyay¹, Jared Garrison², Elena Raycheva¹³, Blazhe Gjorgiev⁴, Turhan Demiray², Giovanni Sansavini⁴, Christian Schaffner¹, Gabriela Hug³

¹ESC, Energy Science Center, ETH Zurich;
²FEN, Research Center for Energy Networks, ETH Zurich
³PSL, Power Systems Laboratory, ETH Zurich
⁴RRE, Reliability and Risk Engineering, ETH Zurich

1 Importance of electricity trading

The Russian invasion of Ukraine this February revealed how dependent Switzerland's security of energy supply is on developments abroad. To reduce such dependency, Switzerland aims at an extensive electrification of the economy while simultaneously increasing the domestic, renewable electricity generation [1]. However, electrification of heating and transport and the expansion of solar power are leading to a seasonal electricity demand and supply imbalance. Therefore, electricity trading with neighboring countries is becoming increasingly important.

Whether electricity imports will remain possible in the future depends on the development of electricity generation and demand in neighboring countries as well as the regulatory and political framework. Like Switzerland, the EU aims at climate neutrality by 2050 as part of the European Green Deal [2]. In response to the uncertainty of Russian gas deliveries, the EU outlined the REPowerEU [3] plan which includes higher share of renewables in the energy mix (from today 17.4% to 45% in 2030) and a solar strategy (to achieve 600GW by 2030). While there is no explicit expansion target, wind power is expected to exceed 1000 GW by 2030 [4].

Figure: Monthly electricity generation in a. the neighboring countries and b. in Switzerland in 2050

At Energy Science Center of ETH Zurich, we use the Nexus-e platform to look at the impact of EU developments on Switzerland. In our scenarios, the 2050 Swiss electricity system, which is based on hydropower, PV, wind, biomass, and electricity trading, is sufficient to supply domestic demand. Electricity trading with neighboring countries is aided by the planned massive expansion of wind parks in Europe, which harmonizes seasonally with solar PV in Switzerland.

2 Gas prices affecting the Swiss electricity system

Electricity Market Optimization

3 Gas as a transition fuel

Electricity System Optimization

Centralized System

Despite the current crisis, natural gas has just been added to the EU guidelines as "green" investments since July 2022 [6]. If neighboring countries rely heavily on gas as a transition fuel (with or without CCS), electricity prices (higher marginal costs) and overall system costs (as Swiss generation is driven out of the market) are increasing.

Gas prices have already been rising in Europe since last summer. Our scenarios outline four short-term effects of high gas prices on the Swiss electricity system:

- When increasing gas prices from €30/MWh (price before 2021) in the baseline scenario to €100/MWh (price at the beginning of 2022), electricity prices double in our scenarios. Compared to the historical day-ahead prices, we even underestimate the prices in the model (see Figure 3a.). One reason for this is that we do not consider the current downtime of French nuclear power plants and the drought that is affecting the hydro power generation
- With higher gas prices the utilization of other flexibility options such as pumped hydro increases as they replace expensive peak load gas units abroad.
- The overall costs of the Swiss electricity system are decreasing slightly, as domestic electricity producers can take advantage of high prices.
- In the neighboring countries, electricity generation from gas units is substituted by lignite and hard coal units, despite higher CO₂ costs.

The main long-term impact we observe is that more domestic generation capacity is installed as high electricity prices increase the profitability of these investments.

Figure: a. Electricity prices 2020 and 2030, b. Total system costs by 2030.

Figure: Impact of high gas prices on a. Electricity market prices and b. Electricity generation from fossil fuels in Germany [5]

REFERENCES

[1] Energiestrategie 2050, Bundesamt für Energie
[2] The European Green Deal, European Commission
[3] REPowerEU Plan, European Commission, 2022
[4] TYNDP scenarios, ENTSOE, 2022
[5] Energy-charts.info
[6] Complementary Delegated Act, European Commission

CONTACT

Dr. Marius Schwarz ETH Zurich Energy Science Center Phone: +41 78 642 06 40 mschwarz@ethz.ch www.sweet-pathfndr.ch

Grid Security Assessment

ACKNOWLEDGMENTS

This work was sponsored by the Swiss Federal Office of Energy's "SWEET" programme and performed in the PATHFNDR consortium. Have a look at additional results and scenarios of this project directly in our webviewer!

Storage reserve for Switzerland

Is it necessary and (how) would it work?

Ingmar Schlecht, Jonas Savelsberg, Moritz Schillinger, and Hannes Weigt ZHAW Winterthur / ETH Zurich / University of Basel

Background and objectives

A large part of Switzerland's generation capacity (>10 GW) is based on storage or pumped storage power plants, which can only produce when the reservoirs are not empty. In order to increase security of supply in winter, the SFOE has therefore proposed a storage reserve. This would pay storage operators to maintain a minimum water level in their reservoirs and thus leave part of the stored energy unused during normal operation in order to be prepared for critical situations.

In this research paper, we first present the theory of a storage reserve and explain the economic basis of storage reserve pricing. Second, we use Swissmod, a DC load-flow electricity market model for Switzerland with a high level of detail in hydropower, to model an electricity market with a storage reserve. We endogenously derive a competitive procurement of storage reserves at the lowest cost

and then test the reserves in different shock scenarios where we specify autarkies with different lengths.

Mechanics of a storage reserve

- Power plants with a large lake volume relative to turbine output have low opportunity costs of storage provision
- They would therefore submit the cheapest bids in a tender •
- However, power plants with a smaller storage volume relative to turbine output are often decisive for security of supply.
- Only with a capacity requirement in the tender would these power plants (which are more expensive to reserve) also participate.

Economic costs of storage reserve reservation (in normal operation, without call-up costs)

A storage reserve...

- ...reduces usable storage volume for normal operation
- ...therefore incurs costs in the form of lost revenues...
- ...but does not reduce the annual energy production (except in first year) \bullet

Results for long import crises (1 week autarky)

Results for short import crises (24h autarky)

Procurement costs € 2'500'000 € 1'932'683 € 2'000'000 € 1′500′000 € 1'347'791 € 1'000'000 € 635'937 € 500'000 € 114'706 Storage Reserve Specification

- Capacity (GW) is decisive to solve short import crises
- High energy levels reduce load shedding only slightly
- 100 GWh / 3 GW specification most efficient
- Overall manageable cost framework
- Assumption: perfect competition

- Significant load shedding during 1 week import crisis (autarky)
- Capacity of the reserve less decisive for long autarkies
- High energy volumes cause significantly higher costs
- Assumption: perfect competition (but excessive bids to be expected at high capacity, then more expensive)

Conclusion

Distribution over sufficient capacity necessary. Not only the specification of an energy quantity, but also the distribution over sufficient underlying power plant capacity is decisive for the effectiveness of a storage reserve. This applies in particular if shortterm, strong shocks are also to be mitigated.

Energy-focused reserves

Capacity-focused reserves

- Cost-benefit difficult to assess. The cost-benefit ratio of a storage reserve depends heavily on events at the political level (in connection with the allocation of cross-border capacities and Switzerland's participation in the European internal electricity market). It is therefore not possible to estimate it from a technical-economic point of view alone.
- Market power problematic. In particular if the storage reserve is designed with a capacity requirement, individual suppliers will be able to exercise market power (excessive prices). This should be taken into account when designing the procurement system.

Wirtschaftswissenschaftliche Fakultät

Integrating Scheduling of Multi-Energy Systems and Industrial Processes

Work package 1: Pathways on a national and international scale

Florian Joseph Baader¹, Ludger Leenders¹, André Bardow¹

¹Energy and Process Systems Engineering, Department of Mechanical and Process Engineering, ETH Zurich

1 Harvesting flexibility by scheduling optimization

How to integrate multi-energy & production systems?

Idea: Coordinated scheduling provides flexibility through sector-coupling and allows to

- Minimize costs
- Stabilize the electricity grid

<u>Challenge:</u> Real-time scheduling of multi-energy systems and

Batch process networks Dynamic Processes Task Storage \bigcirc $d\boldsymbol{x}$ $\frac{dt}{dt} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u})$

3 Optimization for misaligned objectives:

2 Relationship between systems defines optimization method^[1]

Coordination by incomplete information and bilevel optimization^[2]

5 Conclusions

- Integrating multi-energy and production system scheduling results in large benefits
- Relationship between the system defines the optimization method •
- Dynamic process increases challenge for integrated scheduling

6 Outlook

- Experimental validation
- Application to sector-coupled multi-energy systems within PATHFNDR?

REFERENCES

1 Leenders, L. (2022). Optimization Methods for Integrating Energy and Production Systems. PhD Thesis, Mainz Verlag. 2 Leenders, L., Ganz, K., Bahl, B., Hennen, M., Baumgärtner, N., Bardow, A. (2021). Scheduling coordination of multiple production and utility systems in a multi-leader multi-follower Stackelberg game. Computers & Chemical Engineering, 150, 107321. 3 Baader, F. J., Bardow, A., Dahmen, M. (2022). Simultaneous mixed-integer dynamic scheduling of processes and their energy systems. AIChE Journal, e17741

CONTACT

ACKNOWLEDGMENTS

Integration of Detailed Electricity Grid and Sector-Coupled Energy System Models: Nexus-e Engages with SecMOD

Work package 1: Pathways on a national and international scale

Ludger Leenders¹, Jared Garrison², Florian Joseph Baader¹, Marius Schwarz³, André Bardow¹

¹Energy and Process Systems Engineering, Department of Mechanical and Process Engineering, ETH Zurich ²Research Center for Energy Networks, ETH Zurich ³Energy Science Center, ETH Zurich

Energy and Process System Engineering, Research Center for Energy Networks and Energy Science Center proudly announce the engagement of

Multi-energy systems optimization

- Framework for optimization & life cycle assessment of sector-coupled energy systems
- Multi-sector energy demands: electricity, residential, transport, industry
- Investment decisions & operation
- Holistic assessment of environmental impacts
- Open-source available
- Case study for Germany, Switzerland, EU steel plant, etc.

- High-resolution models for energy-economic assessments of future electricity systems
- Interdisciplinary electric systems modeling platform
- Integration of top-down and bottom-up models of the energy-economic system
- Coordinated investments in centralized and distributed resources
- Holistic analysis of the transition of electric power systems

Next steps

• Alignment of data

Questions to be answered by the connection

- How can supply and demand be balanced? What flexibility options are needed?
- 0
- Technical connection of the models
- Determine sector-coupled energy system pathways
- Evaluate Pathways regarding holistic
 assessment of environmental impacts
- How does an increased sector coupling effect the electricity system in future energy systems in detail?
- How do the results of a detailed electricity system model differ from the results of a less detailed but sector-coupled energy system model?
- Are there environmental co-benefits or environmental burden shifting in a transition to netzero?

REFERENCES

1 Reinert C., Schellhas L., Mannhardt J., Shu D. Y., Kämper A, Baumgärtner N., Deutz S., Bardow A. (2022). SecMOD: An Open-Source Modular Framework Combining Multi-Sector System Optimization and Life-Cycle Assessment. Frontiers in Energy Research, 10, 884525.

2 Gjorgiev B., Garrison J. B., Han X., Landis F., van Nieuwkoop R., Raycheva E., Schwarz M., Yan X., Demiray T., Hug G., Sansavini G., Schaffner C. (2022). Nexus-e: A platform of interfaced high-resolution models for energy-economic assessments of future electricity systems. Applied Energy, 307, 118193.

CONTACT

Ludger Leenders

Energy & Process Systems Engineering

ACKNOWLEDGMENTS

Work Package 1 **Euro-Calliope and the integration of Smart Charging Mechanisms into Calliope framework**

Francesco Davide Sanvito¹, Francesco Lombardi¹, Bryn Pickering², Stefan Pfenninger¹

¹ Faculty of Technology, Policy and Management (TPM), Delft University of Technology, Delft, the Netherlands ² Institute for Environmental Decisions, Department for Environmental Systems Science, ETH Zürich, Zürich, Switzerland

Diversity of options to achieve carbon-neutrality and energy self-sufficiency in Europe¹

With the **SPORES** method and the **Euro-Calliope** model, we generate 441 technically feasible and cost-effective options () for an energy self-sufficient, carbon-neutral Europe

With **4 example SPORES** we illustrate here the synergies and tradeoffs that may open up between plausible real-world competing stakeholder goals across a number of pre-defined metrics

Overlap of preferences

Almost anything is technically possible, but preferences restrict the spatial and technical maneouvering space

When many preferences overlap, such as 'low storage use' and 'low biofuel use' some features become must-haves

For instance, a strong deployment of wind generation in Britain and Ireland

Preference 2 only

More relaxed preferences, say not limiting the use of (residual) biofuels, lead to **radically** different spatial configurations

Explore further trade-offs yourselves, with our interactive data explorer! explore.callio.pe

Low storage, high F + 1.3 TW

C + 2.3 T

Hubs for the production of hydrogen and synthetic fuels could be moved to **Eastern Europe**; or to the Mediterranean alongside a larger deployment of solar generation

Integrating Smart Charging Mechanisms into Calliope energy system modelling framework

The integration of **Smart Charging Mechanisms** into **Calliope** which has been first tested on a national case study will be extended to the **European** context.

METHODOLOGY

We add novel constraints into Calliope to model the deployment of both unidirectional (V1G) and bidirectional (V2G) charging

RESULTS

- V2G shows the potential of completely displacing BESS techs
- Reduction of installed capacity of VRES techs.
- Reduction of electricity curtailment (-40%/-50%)

REFERENCES

- [1] Pickering, Lombardi, Pfenninger (2022). Diversity of options to eliminate fossil fuels and reach carbon neutrality across the entire European energy system. Joule. doi.org/10.1016/j.joule.2022.05.009.
- [2] Sanvito (2022). Assessment of sector-coupling synergies between electric vehicles and energy sector in decarbonization pathways. PhD thesis. <u>http://hdl.handle.net/10589/189826</u>.

Bidding zone Sub-zone

- [3] Steward (2017). Critical Elements of Vehicle-to-Grid (V2G) Economics. nrel.gov/docs/fy17osti/69017.pdf.
- [4] Huber, De Clerck, De Cauwer, Sapountzoglou, Coosemans, Messagie (2021). Vehicle to Grid Impacts on the Total Cost of Ownership for Electric Vehicle Drivers. World Electric Vehicle Journal. doi.org/10.3390/wevj12040236.

CONTACT

Francesco Davide Sanvito Technische Universiteit Delft Faculty of Technology, Policy and Management (TPM) F.Sanvito@tudelft.nl

www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

Electric vehicles in a spatial-explicit EXPANSE electricity system model

Work package 1

Zongfei Wang, Jan-Philipp Sasse, Evelina Trutnevyte

Renewable Energy Systems, Institute for Environmental Sciences (ISE), Section of Earth and Environmental Sciences, University of Geneva, Switzerland

INTRODUCTION

Currently, Switzerland plans to phase out its nuclear power plants and hence needs to invest more in new renewable electricity generation [1]. To achieve the goal of net zero emissions by 2050, Switzerland also needs to decarbonize its transport sector by increasing the uptake of electric vehicle (EV), e.g., reaching 50% of plugged-in vehicles in new registration by 2025 [2]. Electricity demand for EVs will hence increase the requirement for renewable electricity generation.

If EV charging behaviors are uncontrolled, they would be temporally homogeneous, and the high charging demand peak could challenge the grid. With controlled charging, EV's load shifting flexibility can be utilized to promote renewable generation integration [3].

Compared with conventional centralized powerplants, renewable generation (such as solar PV and wind) is more constrained in space and generation capacity is thus spatially uneven in cost-efficient future scenarios or in real systems [4, 5]. In addition, the level of EV adoption registration is also spatially uneven (whether by EV registration number or by market share) [6].

Therefore, the heterogeneous spatial allocation of renewable generation and EV calls for the development of a spatially-explicit electricity system model to explore the potential synergy between renewable investment and EV flexibility for Switzerland.

With uncontrolled charging, EV demand can be temporally homogenous, and further increase demand peak. With controlled charging, EV demand could be shifted to the mid-day or nighttime in order to flatten the demand curve or better utilize renewable energy generation.

Here, we aim to see how EV charging flexibility may promote PV generation in Switzerland. With EXPANSE, we could explore such potential transition from a systematic view for the whole country but with municipality level detail.

METHODOLOGY

The EXPANSE modeling framework

EXPANSE is a spatially-explicit, bottom-up, technology-rich electricity system model. EXPANSE models the Swiss electricity system at the municipal level (2148 municipalities) with an hourly resolution to explore the scenarios of electricity sector transition for the single year 2035 or 2050 [5, 8].

The key feature of EXPANSE is municipality-specific decisions for renewable generation allocation instead of having a central planner at the federal level.

EXPANSE includes spatially-refined data for key centralized generation technologies (e.g., large hydro power dams and gas power plants) and distributed renewable generation technologies (e.g., solar, wind turbines and biomass).

In addition to analyzing the least-cost transition pathway, EXPANSE explores hundreds or thousands of near-optimal spatial allocation scenarios with Modeling to Generate Alternatives (MGA) technique [9].

Additional impacts of these scenarios are further analyzed from the environmental and societal aspects, including regional equity, greenhouse gas emissions, particulate matter emissions, land use, investment and divestment, price, and employment

NEXT STEPS

Disaggregate the EV sector of EXPANSE to the municipality level

Refine EV uncontrolled charging profiles based on available research (e.g., differentiate profiles for weekdays and weekends)

Scenarios of EV charging strategies (or modes) may consider: 1) charging at home or workplace, i.e., EV demand would not only shift temporally but also spatially among municipalities; 2) EV development in the future, including market share, charging power, EV battery capacity and energy efficiency; 3) user acceptance of different EV charging schemes: 4) further interaction with stationary battery storage to see whether there may be some synergy or substitution effect between EV and stationary battery technologies.

REFERENCES

[1] Swiss Office of Energy, "Energy Strategy 2050." https://www.bfe.admin.ch/bfe/en/home/politik/energiestrategie-2050.htm [2] Roadmap Elektromobilität, "Roadmap Elektromobilität 2025 | Gemeinsam viel in Bewegung gesetzt / Roadmap Elektromobilität 2025. https://roadmap-elektromobilitaet.ch/de/ [3] L. Xu, H. Ü. Yilmaz, Z. Wang, W.-R. Poganietz, and P. Jochem, "Greenhouse gas emissions of electric vehicles in Europe considering different charging strategies," Transportation Research Part D: Transport and Environment, vol. 87, p. 102534, Oct. 2020 [4] J. Müller and F. Trutnevyte, "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, vol. 265, p. 114747, May 2020 [5] J.-P. Sasse and E. Trutnevyte, "Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation," Applied Energy, vol. 254, p. 113724, Nov. 2019 [6] Bundesamt für Statistik Statistischer Atlas der Schweiz, "Karte: Elektrofahrzeuge 2021 [Politische Gemeinden]. https://www.atlas.bfs.admin.ch/maps/13/de/16504_15115_164_3114/25801.html [7] J. F. DeCarolis, "Using modeling to generate alternatives (MGA) to expand our thinking on energy futures," Energy Economics, vol. 33, no. 2, pp. 145–152, Mar. 2011 [8] J.-P. Sasse and E. Trutnevyte, "Regional impacts of electricity system transition in Central Europe until 2035," Nat Commun, vol. 11, no. 1, p. 4972, Oct. 2020

9] E. Trutnevyte, "Does cost optimization approximate the real-world energy transition?," Energy, vol. 106, pp. 182–193. Jul. 2016

Further develop the EV module to enable different EV controlled charging strategies (unidirectional or bidirectional) to endogenously determine EV charging behaviors

Include EV data to support the modeling of controlled charging strategies above (e.g., EV temporal and spatial usage profiles, EV's access to charging infrastructure, users' acceptance for controlled charging)

Explore how EV's load shifting flexibility may influence PV adoption in Switzerland under different EV scenarios (e.g., adoption level, charging strategies, technology development)

CONTACT

Zongfei Wang Renewable Energy Systems Group University of Geneva Phone: +41 (0)22 379 04 09 Email: zongfei.wang@unige.ch Website: www.unige.ch/res

ACKNOWLEDGMENTS

Transition Paths towards a CO₂-based Chemical Industry within a Sector-Coupled Energy System

Patricia Mayer¹, Ludger Leenders¹, David Yang Shu¹, Benedikt Winter^{1,2}, Christian Zibunas², Christiane Reinert², André Bardow¹

¹Energy & Process Systems Engineering, ETH Zürich, Switzerland ²Institute of Technical Thermodynamics, RWTH Aachen University, Germany

Challenge: Chemical Industry Decarbonization

Results and Discussion

German Clean Electricity Balance for Net-Zero System

5.8% of global energy demand for chemicals [1]

Chemicals will be the largest driver for increased oil demand [2]

Chemical industry 10% of global GHG emissions in 2030 [3, 4]

Net-zero chemical industry needed for net-zero GHG targets

CCU for net-zero chemicals?

transition begins

References

1. IEA (2017): Tracking Clean Energy Progress 2017. Paris.

2. IEA (2018): The Future of Petrochemicals: Towards More Sustainable Plastics and Fertilisers.

3. International Energy Agency (2021): Global Energy Review 2021. Assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021. IEA Publications.

4. A. Kätelhön, R. Meys, S. Deutz, S. Suh, A. Bardow, 2019, Climate change mitigation potential of carbon capture and utilization in the chemical industry, PNAS, 116, 23, 11187–11194

5. N. Baumgärtner, S. Deutz, C. Reinert, N. Nolzen, L. E. Kuepper, M. Hennen, D. E. Hollermann, A. Bardow, 2021, Life-Cycle Assessment of Sector-Coupled National Energy Systems: Environmental Impacts of Electricity, Heat, and Transportation in Germany Till 2050, Front. Energy Res., 9.

Acron	yms

CCU: Carbon Capture and Utilization

LT: Low Temperature MT: Low Temperature HT: High Temperature

DAC: Direct Air Capture

Contact

Patricia Mayer Tannenstrasse 3 8092 Zürich +41 44 633 88 51 patmayer@ethz.ch https://epse.ethz.ch/

Acknowledgements

Sweet swiss energy research for the energy transition PATHFNDR

Cyber-physical platforms: conceptual foundations and empirical case study

Work package 6

Giacomo Melegati¹, Johannes Meuer^{1, 2}, Stefano Coiro³

¹ Chair of Sustainability and Technology (SusTec), Department of Management Technology and Economics, ETH Zurich, Switzerland

² Center for Sustainable Logistics and Supply Chains, Kühne Logistics University, Germany

³Enel X S.r.l., Rome, Italy

1 ABSTRACT

Platforms are one of the most discussed topics in recent management literature, and for good reasons. Some of the world's most successful companies are platforms, thanks to their abilities to generate network effects and foster innovation. However, research mostly focuses on digital platforms, creating the misconception that only companies relying on software-based technologies can establish platform ecosystems. To the contrary, cyber-physical platforms already find many innovative applications in various industries. We first investigate the characteristics of cyberphysical platforms, evaluate the effects of these characteristics on their mechanisms of value creation and innovation, before comparing them to those of digital platforms. We provide a first definition of cyber-physical platforms and highlight that the mechanisms of value creation and innovation of cyber-physical platforms significantly differ from those of digital platforms.

2 CONTRIBUTION TO PATHFDNR

Contribution to work package 6, Task 3: Technological innovation and the interplay between firms at value chain level.

- Milestone M6.3.1: Strategically important technologies (physical vs. digital; core vs. peripheral) identified and analyzed
- Deliverable D6.3: Submission of two peer-reviewed papers on response innovation processes, and business models and decision-making tools. → Writing process for paper contribution.

2 RESEARCH QUESTION AND METHODOLOGY

In the last 30 years, researchers of various disciplines have investigated the topic of platforms. In recent years there have been several new platforms that rely on technologies such as automated control systems, cloud computing, additive manufacturing, machine-to-machine communication and the internet of things (IoT). Meuer et al. (2019) identifies these platforms as "cyber-physical", for they are made of both physical and digital components. Despite their various applications and socio-economical relevance, researchers studied cyber-physical platforms only from a technological perspective (Cusumano et al., 2019; Gunes et al., 2014; Sanislav & Miclea, 2012). Research has failed to examine in detail the nature of cyber-physical platforms and their innovation and value creation dynamics. Therefore, we ask:

- What are cyber-physical platforms?
- What are the effects of their physical features on innovation and value creation patterns and how do these patterns compare to those of digital platforms?

We divided the research process in two stages; a theoretical study and an empirical in-depth case study. First, we collected data through literature review. For the second stake, we collected data from our case Enel X, the customer solutions unit of a global utility provider. Enel X provides services from urban application such as e-city, smart home and electrical mobility. We conducted 15 interviews as primary data and collected company documentation as secondary data. We analyzed the case study following an inductive methodology.

3 RESULTS

Platform literature started in the early 90s with the product design view. This stream of literature on platforms focused on innovation, looking at the modularity of design. In the first half of 2000, the economic view on platform was developed. Using the concepts of network effects and multi-sided platforms, the research stream focused on competition and competitive advantage. Baldwin and Woodard (2009) introduced the 'unified view,' defining that all platforms are made of a core and a periphery. Gawer (2014) introduced the openness of platforms. While the engineering and economic focus dominated the literature on platforms, the context was mainly on purely digital platforms, leaving out the discussion on cyber-physical platforms. From the literature analysis and our interview, we define cyber-physical platform as follows:

"Cyber-physical platforms are modular technological architectures, that differ in their degree of automation and control, in which information flows bilaterally from the physical world to the digital space to connect various devices and agents in an open ecosystem"

What makes a cyber-physical platform?

Modularity, automation & control, connectivity & information flow, and inclusion into ecosystem.

We learned that cyber-physical platforms differ from digital platforms in terms of innovation pattern, value creation & competition, and unique challenges they face.

- Cyber-physical platforms require only incremental innovation to build the infrastructure but rely on radical innovation for platform adoption.
- Cyber-physical platforms rely on a high density of device to constitute the platform and range of service. Competition of new entrants from both physical and digital side makes it very hard recognize potential threats as competitors are most of the times unknown.
- Cyber-physical platforms face unique challenges such as high capital requirements and long sales cycles creating difficulties in scaling the business.

	CYBER-PHYSICAL PLATFORMS	DIGITAL PLATFORMS
Innovation	Incremental innovation to build infrastructure	Same core technological features, new linkages of knowledge
Pattern	 Radical innovation to make shift towards platform adoption 	Architectural innovation pattern
Value Creation & Competition	Density of devices constituting the platforms is major driver to give great range of services Competition of new entrants from both physical and divide both entrances both recompliant broats	Importance of network effects as source of competitive advantage Low capital requirements allow scalability
Unique Challenges	High capital requirements and long sales cycles creating difficulties in creating scalable businesses Mass uside data peult in grouts data	Possibility of platform partners to become competitors for control I one of infractmentary requirements facilitates
	 more varied data result in greater data management and enrichment efforts needed 	interplatform competition

Comparison cyber-physical platform vs. digital platforms

REFERENCES

Baldwin, C. Y., & Woodard, C. J. (2009). The architecture of platforms: A unified view. *Platforms, markets and innovation*, 32, 19-44.

Gawer, A. (2014). Bridging differing perspectives on technological platforms: Toward an integrative framework. *Research Policy*, *43*(7), 1239-1249.

Meuer, J., Toetzke, M., Nakhle, C., & Windeck, S. (2019). A typology of digital building technologies: Implications for policy and industry. *IOP Conference Series: Earth and Environmental Science*, 323(1).

CONTACT

Johannes Meuer Chair of Sustainability and Technology ETH Zurich, Switzerland Phone: +41 44 632 29 83 imeuer@ethz.ch www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

Sweet swiss energy research for the energy transition

PATHFNDR

Cross-sectoral collaboration for a green hydrogen value chain

Work package 6

Annegret Stephan^{1,2}, Katharina Wildgruber^{1,3}, Johannes Meuer⁴, Martin Wietschel²

¹ Chair of Sustainability and Technology (SusTec), Department of Management Technology and Economics, ETH Zurich, Zurich, Switzerland

² Competence Center Energietechnologien und Energiesysteme, Fraunhofer-Institut für System- und Innovationsforschung ISI, Karlsruhe, Germany

- ³ Institute for Industrial Production, Department of Economics and Management, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
- ⁴ Center for Sustainable Logistics and Supply Chains, Kühne Logistics University, Hamburg, Germany

1 ABSTRACT

The development, diffusion, and use of sector coupling technologies such as green hydrogen play an integral role in achieving the climate targets of the Paris Agreement. To ensure a reliable transition towards a sector-coupled energy system, many actors from diverse sectors need to collaborate. However, the characteristics of cross-sectoral collaboration in sector coupling technologies have yet been underexplored. In this study, we analyze 125 European projects which jointly cover the entire green hydrogen value chain. Using fuzzy-set Qualitative Comparative Analysis, we identify four project feature configurations that are associated with cross-sectoral diversity in collaborations: the Mega, the Big & Local, the Non-International, and the Commercial Project archetype. The occurrence of these archetypes varies along the green hydrogen value chain. Our findings suggest that cross-sectoral diversity should be fostered in industry and cross-cutting (standardization, safety, education, recycling) projects and that it can be addressed by policymakers through the targeted promotion of certain project features.

2 CONTRIBUTION TO PATHFDNR

Contribution to work package 6, Task 2: Technological innovation and the interplay between firms at value chain level.

- Milestone M6.2.1: Technology value chains identified and understood, linkages due to sector coupling identified and analyzed.
 - Deliverable D6.2: Submission of three peer-reviewed papers on business interests, value chain processes, and innovation strategies. → Writing process for paper contribution.

2 RESEARCH QUESTION AND METHOD

As sector coupling technologies like those deployed in the field of green hydrogen will serve multiple established sectors simultaneously, they will become integral elements across several sectors. This distinct characteristic goes beyond those of traditional (i.e., non-sector-coupling) technologies, and is likely to require substantially different innovation processes. On the one hand, studies in this field have analyzed regulatory framework conditions but have provided limited insights into innovation processes. On the other hand, more general innovation studies have examined innovation in individual technologies for single sector applications, but innovation processes for sector coupling remain widely unexplored. Therefore, we ask:

- What configurations of project features are associated with cross-sectoral diversity in collaborations for green hydrogen?
- How do these collaborative patterns vary along the value chain?

Method: fuzzy-set Qualitative Comparative Analysis (fsQCA), expert interviews

Data: 125 green hydrogen projects from FCH JU database, 7 expert interviews

3 RESULTS

We analyzed the hydrogen value chain, which is end-used in the three areas: Transport industry and building heat.

The highest participation of project partners for green hydrogen stems from Germany, France, Italy, and the UK. An overall high involvement of research and education institutions exists in the projects (see total project participation). This involvement is more distinct at some value chain stages (cross-cutting, generation, storage, fuel cell development) than at others. This indicates that an overall high level of early-stage innovation in green hydrogen exists, especially in the mentioned value chain stages.

We identified 4 archetypes of green hydrogen projects with different permutation.

1. The Mega Project

Hight project cost, many project partners.

- 2. The Big Local Project
- Many project partners, yer (least project concertium, Not leng project duration

t, (((Renewables Nuclear Natural Gas Natural Gas Natural Gas Diomass Coal Lignite	Electrolysis Steam Reformation + CCS Steam Methane Reformation Methane Pyrolysis Gasification (+CCS) Gasification	Gas Grid Storage Fuel Cell Development Building Heat	Education Safety Standards Recycling
l	Primary Energy Source	H2 Production		
1	Gener	ation	Infrastructure Storage Fuel Cell Development End Use	Cross-Cutting
	Hydrogen value	chain	Hydrogen Value Chain and End Uses───→	

Many project partners, very local project consortium. Not long project duration.

3. The Few Nationalities Project

Two subtypes:

3a Local: Very local project consortium. Not very international project consortium. 3b Big, short-term: Many project partners, not very international project consortium, no long project duration.

4. The commercial project

Three subtypes, all high share of commercial partners and following and additional: 4a Local: Very local project consortium.

4b Expensive, international: High project costs, very international project consortium.

4c Short-term, international: no long project duration, very international consortium.

Sectoral involvement of project partners of the green hydrogen value chain

REFERENCES

Wildgruber, K., (2022), Cross-sectoral collaboration for a green hydrogen value chain, Master Thesis, KIT Karlsruhe/ETH Zurich.

CONTACT

Dr. Annegret Stephan Chair of Sustainability and Technology ETH Zurich, Switzerland astephan@ethz.ch

www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

Optimal design of hydrogen supply chains to decarbonize hard-to-abate industry in Europe Work package 1.2

Alissa Ganter, Paolo Gabrielli, Giovanni Sansavini Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland

1 INTRODUCTION AND MOTIVATION

Opportunity: Hydrogen have the potential to decarbonize hard-to-abate industrial sectors such as ammonia production and refineries¹

2 PROBLEM FORMULATION

Input Data

Hydrogen demands for ammonia production and refineries²

Challenge: The lack of a European hydrogen supply chain infrastructure prevents the widespread use of low-carbon hydrogen^{2,3}

- Resource availabilities³ and cost
- CO₂ storage locations and capacities
- Technology data (capital, operational expenditures, conversion efficiencies)

3 OPTIMAL HYDROGEN SUPPLY CHAIN DESIGN

Spatially-resolved input data²

Hydrogen production [TWh] and transport to reach carbon neutrality by 2035 (CN2035)

Levelized cost of hydrogen and cumulative emissions Optimal hydrogen production technology mix from 2025 to 2035 for EU55 and minCO₂ 160 · 1000 **CN2035** Technologies Carbon Supply Chain **Decarbonization pathways Biomass Transport** [140 -120 -100 -80 -80 -____ EU55 electrolysis H₂ Production $\overline{}$ minCO₂ SMR [Mt] 800 H₂ Transport emissions EU55 **SMR-CCS** - emissions emissions minCO₂ biomethane SMR uction biomethane SMR-CCS 60 gasification gasification-CCS of ydrogen 400 60 EU 55 Levelized The EU Fit55 target to decarbonize 40 50% of today's hydrogen production Cu 200 20 can be reached with an increase of

9 €/MWh from 35 to 44 €/MWh with respect to the cost-minimal solution⁵

4 CONCLUSIONS

- The levelized cost of hydrogen increases by 150%, from 35 €/MWh to 138 €/MWh, when increasing the decarbonization target from 90% to 100%
- The results highlight the importance of biomass-based hydrogen production in the transition from fossil-based hydrogen production to low-carbon hydrogen production
- A clear ranking of low-carbon hydrogen production technologies can be derived with biomass gasification being the preferred option. Biogas reforming serves as a
 transition technology. The role of water-electrolysis and CCS is low, due to high system costs.

REFERENCES

1. van der Spek et al., Energy & Environmental Science 2022, Vol. 22

- 2. Kakoulaki et al., Energy Conversion and Management, 2021, Vol. 228
- 3. Rosa et al., Energy & Environmental Science, 2021, Vol.157
- 4. Gabrielli et al., Applied Energy, 2020, Vol 275
- 5. European Commission, "Fit for 55": delivering the EU's 2030 Climate Target on the way to climate neutrality, 2021

CONTACT

Alissa Ganter ETH Zurich Reliability and Risk Engineering Phone: +41 44 632 31 82 aganter@ethz.ch www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

PAUL SCHERRER INSTITUT

PSI's Energy System Integration Platform (ESI)

Work package 3 – Technology and model development

Christian Peter¹, Pascal Häfliger¹

¹Electrochemistry Laboratory, Paul Scherrer Institute, Forschungsstrasse 111, 5232 PSI Villigen, Switzerland

2 DYNAMICS OF PEM TECHNOLOGIES

Fig. 3: Primary frequency control results for frequency increase (top) and frequency decrease (bottom).

Tests conducted with **polymer** electrolyte membrane (PEM) technologies.

- Demonstrated synchronous grid frequency control capability.³
- Fast dynamics using pure oxygen in the processes.
- Collaboration with Swissgrid using relevant technology level.
- PEM Electrolyzer system (TRL 7) +/- 8 % p.u. / s.
- PEM Fuel cell system (TRL 5) +/- 33 % p.u. / s.
- Coming with a small droop high controllability per unit of installed power.

- Fundamental efficiencies determined.
- Base for techno-economic assessments.
- PtH₂tP using pure oxygen.
- Higher roundtrip efficiency than with air (+ 7.5 % in near future).

	I	Losses in % of system feed entity:						
		PtG GtP						
Category	2011	2040	Δ	2017	2040	Δ		
BoP	5.8	3	2.8	5.6	1.2	4.4		
Converter	8.0	0.5	7.5	4.0	1.4	2.5		
EC	38.5	26.8	11.7	33.5	27.2	6.3		
GC	0.5	0.5	0	-	-	-		
GUL	-	-	-	3.6	0.24	3.4		
Tot. EL	52.9	30.8	22.1	-	-	-		
CDG	1.2	0.6	0.6	-	-			
Total	54.1	31.4	22.7	46.7	30.1	16.6		

Fig. 5: Development of the different losses investigated. (Balance of plant (BoP), electro-chemical (EC), gascrossover (GC), and gas utilization (GUL)).

REFERENCES

1 https://www.psi.ch/de/media/esi-plattform

2 https://remap.ch//platform

- 3 C.Peter et al., IJEPES, 141, 108121 (2022).
- 4 B. Flamm et al., Applied Energy, 281, 116031 (2021).

CONTACT

Christian Peter Paul Scherrer Institute Electrochemistry Laboratory Phone: +41 56 310 55 88 christian.peter@psi.ch www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

This work was sponsored by Swissgrid AG, the ETH domain, and the Swiss Federal Office of Energy's "SWEET" programme and performed in the PATHFNDR consortium.

MODEL DEVELOPMENT FOR ADVANCED CONTROL ALGORITHMS

Work package 3 – Technology and model development

Christian Peter¹, Lisa Morandi², Marta Fochesato³

¹Electrochemistry Laboratory, Paul Scherrer Institute, Forschungsstrasse 111, 5232 PSI Villigen, Switzerland ²Department of Mechanical Engineering, ETH Zürich, Zürich, Switzerland ³Department of Electrical Engineering, ETH Zürich, Automatic Control Laboratory, Zürich, Switzerland

- developed.

REFERENCES

1 B. Flamm et al., Applied Energy, 281, 116031 (2021) 2 https://remap.ch/project t3-9

CONTACT

Christian Peter Paul Scherrer Institute Electrochemistry Laboratory Phone: +41 56 310 55 88 christian.peter@psi.ch www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

This work was sponsored by the ETH Foundation and the Swiss Federal Office of Energy's "SWEET" programme, and was performed in the PATHFNDR consortium.

Planning & operation of multi-energy systems

Work package 2 (ST1, 3.2 & ST4.1)

Adamantios Marinakis¹, C. Yaman Evrenosoglu¹, Turhan Demiray¹

¹Research Center for Energy Networks (Forschunsstelle Energienetze – FEN), ETH Zürich

INFRASTRUCTURE PLANNING FOR MULTI-ENERGY SYSTEMS (CITY, VILLAGE ETC.) Gas distribution network **Electricity distribution** Long-term multi-energy system planning¹ network planning planning Gas network contraints Electricity network contraints Energy supply Natural gas vs. H2 Available Generation, ÷ 🗐 Flexibility needs demand & storage flexibilities 要表 Appliances ٠ # MMM ∰ ⊡ ·# 要高 PV + BESS Æ ÷ # E-Mobility æ 1.1228.28.29.188.22283.3 Feed-in tariffs \$ æ

IDENTIFICATION OF USE-CASES: REPRESENTATIVE GRIDS (ELECTRICITY, GAS, HEATING) & ENERGY SCENARIOS

Rural, urban, mountainous regions; electricity, gas and district heating networks; type of sites / end-users; resource availability

REFERENCES

- 1 A. Marinakis and T. Demiray, Sector Coupling, SGEN Project, Final Report, 2022.
- 2 C.Y. Evrenosoglu, J. Garrison, A. Fuchs and T. Demiray, TDFlex TSO-DSO Flexibility: towards integrated grid control and coordination in Switzerland, Swiss Federal Office of Energy, Final Report SI/501735, 2022.
- 3 S, Meinecke et al., SimBench—A Benchmark Dataset of Electric Power Systems to Compare Innovative Solutions Based on Power Flow Analysis, Energies 2020.

CONTACT

Dr. Adamantios Marinakis Dr. C. Yaman Evrenosoglu Research Center for Energy Networks (FEN), ETH Zürich Phone: +41 44 632 69 68 marinakis@fen.ethz.ch

www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

Optimal integration of Borehole Thermal Energy Storage in district heating and cooling networks

Joel Haas^{1,2}, Massimo Fiorentini¹, Robert Weber¹, Paolo Gabrielli², Giovanni Sansavini²

¹Empa - Swiss Federal Laboratories for Materials Science and Technology ²Institute of Energy and Process Engineering, ETH Zurich

1 Motivation

Integrating a borehole thermal energy storage (BTES) into district heating and cooling networks enables cost-effective seasonal storage of waste and renewably-generated heat. The operation of such a district heating and cooling network involves a large number of decision variables and is affected by boundary conditions¹, such as the CO2 intensity of the electricity, which varies seasonally. For this reason, an optimization formulation needs to be developed. To predict the performance of such systems, two modelling approaches are normally employed:

- High fidelity models, which simulate the detailed behavior of the networks and components for predefined parameters. (such as in TRNSYS or Modelica)
- Optimization formulations, using simplified, mostly linearized, models, to calculate optimal decision variables affecting these systems.

Due to high computational costs, no numerical approaches with detailed highfidelity models can be solved in a reasonable time, but it is at the same time unknown how well the simplified approaches can represent these systems. This leads to the research questions of this work:

How does the optimal solution of operational parameters managing a BTES, which has to be found with simplified models, compare to the same inputs given in a high-fidelity platform?

Considering the seasonality of the CO2 intensity of the electricity, what is the best operating temperature of the BTES, and when should be air be used as a source?

2 Case Study

A generic district heating and cooling system, analogous to Fig. 1, was used as a case study. It has 3 networks:

High-temperature network at 68/45°C, which is dedicated to supply the heating load. The heat is provided by 3 different heat pumps, namely an air, a waste heat and a BTES source heat pump. In case the heating demand cannot be covered by the heat pumps, a boiler Fig. 1: Case-study system simplified sketch is switched on as a backup.

- Medium-temperature network at 38/28 °C, is used to receive and store the rejected heat inside the BTES. In case of excess of heat during summer, the heat can also be released to the environment via a cooling tower.
- Cold network, providing cooling via a single chiller in the cooling network and has a temperature level of 6/12 °C.

A buffer is integrated within each temperature level, which enables short-term storage of heat and thus simplifies the control of the entire system.

In a first step, a detailed model of the heating and cooling network with a time step of $1/_4$ hour was created in TRNSYS. With this, two baseline simulations were created. One with a low temperature BTES, with a starting temperature (T_{BTES,initial}) of 12 °C and a high temperature BTES at 25 °C. These two simulations serve as a benchmark. In a second step, an energy hub approach formulated as a nonconvex MILP formulation was developed with Gurobi and Yalmip in Matlab. The objective was to minimize the annual CO₂ emissions, by optimally operating the network. The following 2 optimization parameters were selected.

- T_{BTES.initial} (initial BTES temperature in spring)
- T_{air,set} (daily mean air temperature at which the air source is prioritized over the BTES source heat pump)

This formulation takes the annual CO₂ intensity of electricity into account and approximates the BTES as a steady-state cylindrical ground storage with a uniform temperature. In addition, the maximum energy transfer rate in and out of the BTES was assumed by a constant UA value, as follows:

$$T(i+1) = T(i) + \frac{\Delta t}{M_g V_g} \left[\dot{Q} - \underbrace{U_A A_g(T(i) - T_a(i))}_{\text{Top losses}} - \underbrace{k_g h \frac{D_g}{2}(T(i) - T_g)}_{\text{shell losses}} \right] \qquad \dot{Q}_{BTES,i} \le \text{UA}_i \Delta T_i$$

To further reduce the calculation time, a daily time step was chosen.

4 Results

- Comparing the high and low-temperature BTES baseline results in TRNSYS, the high temperature solution (Fig.3) reduces CO2 emissions by 5%, despite having a lower thermal efficiency of the storage (~70% vs ~80%).
- Optimal solution was found to be 22°C for T_{BTES,initial} and 4.5°C for the average daily mean temperature trigger T_{air,set}. In TRNSYS, the reduction in yearly CO2 emissions compared to the baseline low-temperature increased to 7.2% (Fig.4).

Fig. 4: Comparison of cumulative emissions, baseline low temperature vs Optimal (TRNSYS)

The BTES, on the other hand, is used as longterm storage and has a diameter of 50m, a depth of 100m and consists of 144 double-U ground heat exchangers (GHXs) (Fig.2) An annual load profile of the EMPA research campus was used as input to the models. The network provides an annual heating demand of 6850 MWh and a cooling demand of 3490 MWh.

While the optimal solution is better than the two baselines when implemented in the high-fidelity model, the expected emissions by the optimizer is 10% lower than the more realistic one with the same setting. The mismatch is mainly due to the limitations of the different time steps of the models, removal of buffers, and interaction between components, which is simplified in the optimization.

REFERENCES

1 Fiorentini, M., & Baldini, L. (2021). Control-oriented modelling and operational optimization of a borehole thermal energy storage. Applied Thermal Engineering, 199, 117518. https://doi.org/10.1016/J.APPLTHERMALENG.2021.117518 2 Weber, R., & Baldini, L. (2018). High Temperature Seasonal BTES for Effective Load Shifting and CO2 Emission

Reduction. Eurosun 2018 – 12th International Conference on Solar Energy for Buildings and Industry., September, 1-9. https://doi.org/10.18086/eurosun2018.13.04

CONTACT

Massimo Fiorentini Empa Urban Energy Systems Laboratory Phone: +41 779 60 86 56 massimo.Fiorentini@empa.ch www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

Model development for integrated systems: example application and preliminary results

Work package 3

Edward Lucas¹, Esther Linder¹, Marcel Troxler¹, Philipp Schütz¹, Willy Villasmil¹

¹Lucerne School of Engineering and Architecture, Technikumstrasse 21, 6048 Horw

1 OBJECTIVES

Seldom is thermal energy stored or used to **bridge the seasonal energy gap** in Switzerland, despite the residential sector alone using nearly one third of total energy consumption; with 50 % from oil and gas burning¹. To reduce CO₂ emissions significantly, **flexible integrated energy systems utilizing renewable**, **sustainable generation and energy storage technologies that enables sector coupling** are required. These systems are crucial to reach the net zero goal by 2050 of the Swiss climate strategy².

To analyse integrated systems of various designs and compositions of generation and storage technologies, it is necessary to have validated models that accurately describe the system and its operational characteristics.

pecifically the contributions are to provide validate

2 CONTRIBUTION TO PATHFNDR

Specifically, the contributions are to **provide validated component models of a range of generation and storage technologies**, at various levels of complexity and dynamic detail. In this poster, an application of modelling an integrated system using water-based seasonal energy storage is shown.

To identify viable renewables integration pathways and the potential for energy systems flexibility, this portfolio of validated models is necessary to facilitate conceptual system design, feasibility analysis, as well as eventually operational and techno-economic optimization of such systems. **These models will be used to inform scenario analysis in Work Package 2**.

2 METHODOLOGY

In assembling a suite of models based on an identified set of modelling requirements from WP2, energy generation technologies and storage technologies have both been considered. **Models at various levels of complexity and time-resolution exist and are being developed** – the goal being that analysis is conducted in the most efficient manner; utilizing models at the appropriate level of detail for the degree of insights required (e.g. only using more complex models when dynamic system behaviour is of interest).

It is crucial that models, especially when simplified, nonetheless retain the critical pieces of information necessary to arrive at correct outcomes and insights. An example of this is Thermal Energy Storage (TES) systems that must include operational temperatures within models rather than simply gross energetic content – leading potentially to infeasible flexibility outcomes. **Key performance indicators (KPIs) for each of the technologies are identified**, and agreed upon by experts, allowing subsets of these KPIs to be used as a general method of comparison between conceptualised, existing, and optimized systems³. Figure 1 shows the adopted methodology and how these activities relate.

3 RESULTS AND NEXT STEPS

Application of simplified energy balance modelling to a planned seasonal thermal energy storage system (Figures 2 and 3), envisioned as a **sustainable and relatively inexpensive solution to bridging the seasonal energy gap** for small to medium sized residences⁴, is readily achieved. Relatively simple steady-state (with the exception of the storage itself) component models are used to **rapidly estimate the suitability and/or feasibility** of implementing such a system under various scenario conditions.

Here, one can explore practical insights in how the system would respond to changes to the physical and economic environmental variables. We see how the temperature levels would plausibly develop and oscillate within the envisioned seasonal storage during the first and subsequent two years of operation. Such modelling allows engineers to extract insights, say, the amount of heat available from the storage at a particular temperature throughout the year, as a way of estimating the relative utility of installing such a storage to meet a particular heating demand seen in a test scenario. A relatively easy question could be: would such a system operate in a manner that allows residents to have reliable access to domestic hot water throughout the year? A more complex inquiry could be: How can such TES systems contribute to the flexibility characteristics of the overall energy system?

Next steps are to complete validation of the seasonal TES model using existing validated transient models and field data.

Figure 3: Simulated temperature profile of the water-based seasonal thermal energy storage showing how tank temperatures develop and change throughout the year in accordance with seasonal charging and discharging behaviour. The modelled location used weather data from the city of Luzern.

REFERENCES

 1 Overall energy statistics, Federal Office of Energy.
 2 Long-term climate strategy to 2050, Federal Office for the Environment.
 3 Evaluation of energy density as performance indicator for thermal energy storage at material and system levels, Joaquim Romaní et al. 2019 Applied Energy 235, 954-962
 4 GEAS Project, Luzern University of Applied Sciences

CONTACT

Edward Lucas Lucerne School of Engineering and Architecture CC Thermal Energy Storage edward.lucas@hslu.ch www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

Technik & Architektur

RMAL ENERGY STORAGE

www.hslu.ch/tes

Hochschule Luzern

Estimating heat demands of residential buildings

Work package 2

Esther Linder¹, Marcel Troxler¹, Edward Lucas¹, Philipp Schuetz¹

¹Lucerne School of Engineering and Architecture, Technikumstrasse 21, 6048 Horw

1 OBJECTIVES

In Switzerland, the residential sector spends nearly a third of the total energy consumption of which almost 50% is from oil and gas burning¹. To reduce the CO_2 emissions significantly, oil and gas based heating systems need hence to be replaced with renewable options such as heat pumps, especially also to reach the net zero goal by 2050 of the Swiss climate strategy².

To analyse how heat demands can be covered with renewable energy sources and to quantify the flexibility contribution from space heating system, it is necessary to estimate the heat (and cooling) demands for the Swiss building park reliably. This demand depends for example on the geographic location, size, and insulation of the building and its neighbourhood.

2 CONTRIBUTION TO PATHFNDR

To quantify the flexibility between demands and energy sources, a necessary input are demand estimation. These demands concern electricity, but also heat/cooling demands. Through conversion technologies such as a heat pump, the heat demand can be supplied by electricity and hence is a provider of potential sector coupling and flexibilities.

An estimation of **heat demands for residential buildings** is therefore a crucial input to Pathfndr and serves as the **basis for the estimation of the flexibility and sector coupling potential**. In this poster, heat demand estimation for residential buildings are presented.

2 METHODOLOGY

Two approaches to estimate the heat demand of residential buildings are presented. Both of them are based on public building properties such as size or building age (which are taken from the Federal Register of Buildings and Dwellings³(RBD)), assume a constant room temperature of 20°C and take into account weather data. The RBD data has to be used with caution, as it is for same cases incomplete or outdated. However, due to its wide coverage, it is a valid starting point for this analysis. The weather data is taken from Agrometeo⁴, which provides weather data from more than 150 stations in Switzerland with a resolution of 10min. Important for this analysis are the measured ambient temperatures.

One of the approaches uses the **building class to estimate the heat demand based** on the SIA norm⁵. The other one calculates the **heat transmission factor from the building properties directly**, as was also done by Peru Elguezabal *et al* 2019⁶. The heat demand estimation is multiplied, depending on the age of the building and the ambient temperature. In a refined version, the scaling factor is fitted based on clustered real-world consumption.

3 RESULTS AND NEXT STEPS

The distribution of the actual consumption values and the estimated values from the refined method from above is shown in *Figure 1*.

Figure 1 shows the distribution of the specific space heat demands for a city where also the actual heat demands were available. Shown is the number of buildings per specific space heat demand in kWh/m²/a, for the actual measurement as well as the prediction from the model. The three peaks which are present in the measurement at roughly 50, 60, and 80kWh/m²/a are recovered by the modelling. Also, the peak height is satisfyingly similar in the predicted and actual measurement, with an overshoot at the peak around 80kWh/m²/a, which is compensated with a low number of buildings on the right wing of this same peak for the predicted data. A difference occurs with some high consumers at more than 160kWh/m²/a, which are not present in the actual data. Overall, **a satisfying agreement with actual measurement data and the models** was achieved.

The calculation of the heat demand is now **automatized for calculating the yearly heat demand of every building of a complete community**. An example is shown in *Figure 2*, which displays the coordinates of the buildings together with the colourcoded estimated heat demand. We are currently in exchange with different communities to have **more possibility for validation** for the presented approaches.

Figure 1: Distribution of heat demands, actual and predicted, for a specific community.

Next steps are also to **calculate the heat demand on a daily basis**, taking into account the weather data at a specific location.

Figure 2: Specific space heat demands calculated for a specific community.

REFERENCES

1 Overall energy statistics, Federal Office of Energy.

2 Long-term climate strategy to 2050, Federal Office for the Environment.

3 Federal Register of Buildings and Dwellings, Federal Statistical Office.

4 Agrometeo, Schweizerische Eidgenossenschaft.

5 Raumnutzungsdaten für Energie- und Gebäudetechnik, SIA Nr. 2024, Jahr 2021. 6 Peru Elguezabal *et al* 2019 *J. Phys.: Conf. Ser.* **1343** 012128.

CONTACT

Esther Linder Lucerne School of Engineering and Architecture CC Thermal Energy Storage <u>esther.linder@hslu.ch</u> www.sweet-pathfndr.ch

ACKNOWLEDGMENTS

Flexibility assessment of E-mobility in Multienergy Systems

Work package 2

Binod Koirala¹, Robin Mutschler¹, Andrea Bartolini³, Andrew Bollinger^{1,2}, Kristina Orehounig¹

¹ Empa Urban energy system Lab

- ² Sympheny
- ³ETH Singapore

1 BACKGROUND AND OBJECTIVES

- Decarbonization of the mobility sector is increasingly becoming important.
- E-mobility emerging as major source of power demand in urban energy system.
- This work studies the flexibility of e-mobility in a multi-energy system.

2 CONTRIBUTION TO PATHFDNR

- Enhancement of Ehub tool with e-mobility module.
- Contribution to T3.1 on site planning considering multi-energy flexibility.
- Techno-economic parameters as well as modelling assumptions.

3 METHODOLOGY

E-hub Tool of Empa is used to perform the planning and operation of multi-energy system.

Figure 1: Multi-energy system in Ehub Tool

> An e-mobility module is developed and integrated > The module is tested in the e-hub tool using into the E-hub Tool.

The module captures the fleet size, charger size, transport demand, vehicle availability, controllability and battery size.

Figure 3: Case study of Chur, Switzerland

3 RESULTS

- > E-mobility can provide demand and supply-side flexibility in the multi-energy system, see Fig. 4.
- > Under the given boundary conditions and energy-mix, V2G is an attractive solution in a cost optimization over a CO₂ optimization scenario.
- Sensitivity analysis on input parameters as well scenarios will be useful to obtain further insights on the value of e-mobility flexibility.

Figure 4: Cross-sector utilization and flexibility between power and e-mobility sector with cost and CO2 minimization objectives.

Figure 5: Optimal V2G/G2V profiles of Chur EV fleet with cost minimization and their correlation with electricity prices

REFERENCES

- 1 B. Koirala, R. Mutschler, A. Bartolini, A. Bollinger, and K. Orehouning, "Flexibility assessment of e-mobility in multienergy districts," CIRED e-mobility workshop, 2-3 June 2022, Porto, doi: 10.1049/icp.
- 2 P. Murray, J. Carmeliet, and K. Orehounig, "Multi-Objective Optimisation of Power-to-Mobility in Decentralised Multi Energy Systems," Energy, vol. 205, p. 117792, Aug. 2020, doi: 10.1016/j.energy.2020.117792
- 3 L. A. Bollinger and V. Dorer, "The Ehub Modeling Tool: A flexible software package for district energy system optimization," Energy Procedia, vol. 122, pp. 541–546, Sep. 2017, doi: 10.1016/j.egypro.2017.07.402.

CONTACT

Binod Koirala Empa Urban Energy System Lab Phone: +41 binod.koirala@empa.ch

ACKNOWLEDGMENTS

Modeling and Control of Multi-energy System in a Microgrid

Work package 3 Rahul Gupta, Fernando Soria, Mario Paolone Distributed Electrical Systems Laboratory, EFPL

1 Objectives

Model predictive control (MPC) of a multi-energy systems in a microgrid – optimization across electrical + gas + thermal grids.

Challenges: Fuel cell (FC) + Electrolyzer (EL) systems are inherently

Objectives

Minimize cost of operation (electricity from the grid)
Optimize dispatch plan of energy resources

non-linear. It makes the optimization problem **<u>non-convex</u>**.

Building electric power bus Grid connection

Assumption: all the resources are connected at the same node, so electrical grid is not modeled (It will be considered in future work).

3 Simulation setup

3 Minimize electricity cost

4 Track dispatch plan

Fig. 4. Optimized power from different resources.

S Cost comparisonCOST
(operation)Dispatch
errorWith FC, EL14.25 €22 kWhWithout FC, EL16.60 €365 kWhWithout FC, EL,
Battery17.68 €1112 kWh

6 Conclusions

Model predictive control of multi-energy system connected to a microgrid is proposed.

- A linear model of fuel cell and electrolyzer is developed for obtaining tractable control formulation
- The simulated results show lower costs when fuel cell and electrolyzer are considered in the control.

CONTACT

Rahul Gupta, MSc. PhD Student, Distributed Electrical Systems Laboratory, EPFL rahul.gupta@epfl.ch

ACKNOWLEDGMENTS

Coordinated Multi-grid Dispatch Framework

Work package 3 Rahul Gupta, Mario Paolone **Distributed Electrical Systems Laboratory, EFPL**

1 Motivation

- □ Balancing Groups (BGs) are responsible for coordination between the generation and the demand.
- □ They are not constrained geographically (in Switzerland).
- Distributed energy resources (DERs) at different sites in distribution systems can be used in aggregated way (**crowd balancing**) to provide **ancillary services** to the transmission network e.g. for *Dispatching, primary frequency* regulation etc.

2.1 Objective

- □ Flexible resources across different sites are controlled to provide aggregated flexibility to the upper-layer transmission grid.
- □ By coordinating microgrids at different sites (e.g., EPFL and PSI) to have aggregated response.
- □ Local constraints of the grid and DERs to be accounted.

- Method of Multipliers (ADMM).
- resources.

Conclusions

- A framework is developed for coordinating the flexibilities (power and energy) from different ۲ distribution grids while accounting for network constraints.
- The developed framework is applied to day-ahead dispatch computation for a multi-grid system. ۲
- It shows better dispatch performance (tracking) when flexibility and uncertainties of the downstream \bullet distribution systems are considered in computing the dispatch plan.
- Rahul Gupta, MSc. PhD Student, Distributed Electrical Systems Laboratory EPFL, rahul.gupta@epfl.ch

ACKNOWLEDGMENTS

Network tariffs for flexible loads (NETFLEX*)

Authors: Patrick Ludwig and Christian Winzer (winc@zhaw.ch)

Abstract

Dynamic grid tariffs can incentivize grid-serving behavior of load without requiring direct load control by grid operators. However, they need to be designed appropriately to avoid rebound peaks and welfare losses due to unnecessary demand response activations. We analyze the performance of 9 different dynamic tariff designs with regard to their impact on household consumption behavior and grid utilization. In a linear optimization model, we determine the optimal operation of electric vehicles, heat pumps, batteries and PV systems based on four result metrics: (i) Effectiveness (ii) Efficiency, (iii)) Profitability of technologies & (iv) equity. We find that in a system with a large share of flexible devices, direct load control and capacity prices effectively reduce load peaks. Time variable grid tariffs create problematic new rebound peaks, however, this could be avoided, by a novel approach where the tariff is charged proportional to the grid-load, rather than as a function of time.

Inputs

Tariff scenarios

We model 9 different tariff scenarios for 3	00
housholds in 2 different years.	

Infrastructure in 2020 is based on the current penetration of new technologies according to the Swiss Household Energy Demand Survey (SHEDS).

Infrastructure in 2050 is based on the "Energy perspectives" Szenario ZERO Basis.

Infrastructure Scenarios

	Household Features				Household Count		Simulation	
HH-Type	HP	EV	Battery	PV	2020	2050	2020	2050
type1	0	0	0	0	211	66	70.3%	22.0%
type2	1	0	0	0	57	0	19.0%	0.0%
type3	0	1	0	0	5	29	1.7%	9.7%
type4	0	0	0	1	4	0	1.3%	0.0%
type5	1	1	0	0	3	4	1.0%	1.3%
type6	1	0	0	1	3	0	1.0%	0.0%
type7	0	1	0	1	0	1	0.0%	0.3%
type8	0	0	1	1	8	0	2.7%	0.0%
type9	1	1	0	1	1	60	0.3%	20.0%
type10	1	0	1	1	6	0	2.0%	0.0%
type11	0	1	1	1	1	0	0.3%	0.0%
type12	1	1	1	1	1	140	0.3%	46.7%
Total					300	300	100%	100%

Simulation

The simulation model consists of three steps:

1 Calculate system costs based on infrastructure scenario and calibrate tariffs to ensure cost recovery

2 Optimize dispatch of flexible loads to minimize consumer bill for the given tariff, while avoiding discomfort

3 Recalibrate tariff levels to ensure cost recovery

Results for 2020

Equity

Profitability

- Most tariffs increase profitability of flexible loads
- ...while increasing cost of unflexible customers
- Tariffs proportional to gridload and DLC reduce the cost for (almost) all household types

Tariff impact on average annual cost of households from different income brackets

Income bracket [CHF/month]

- A capacity tariff, gridload tariff and Direct Load Control (DLC) reduce the average cost for households in all income brackets
- DLC achieves strongest gridcost reduction, but ignores energy costs

Disclaimer

*) The project has received funding from SFOE. Authors alone are responsible for the findings and conclusions.