

The EPFL smart grid platform

Prof. Mario Paolone EPFL Distributed Electrical Systems Laboratory

PATHFNDR lunch talk 03.02.2022

Research topics

- Real-time situational awareness
- Machine-learning forecasting of renewables
- Interaction of MW-class renewable energy sources and energy storage systems
- Centralized vs decentralized control schemes
- IoT schemes applied to power systems
- Demand side management
- Self-healing grids

Overview of the infrastructure

 École polytechnique fédérale de Lausanne

 Distributed Electrical Systems laboratory

The medium-voltage infrastructure

Distributed Electrical Systems laboratory

The low-voltage infrastructure

Grid topology and devices (benchmark defined by the Cigré Task Force C6.04.02)

- Photovoltaic (PV) systems:
 30 kW, divided into three plants
- Load (L) emulators:
 30 kVA, three power electronic converters
- EV charging station: Chademo, DC charger, single/3-phase AC charger
- Supercapacitor (SC) storage system: 75 kW / 2 kWh.
- Battery (B) storage system:
 25 kW / 25 kWh, Lithium-Titanate-based
- Fuel Cell (FC):
 20 kW, under refurbishment
- Electrolyzer (EL): 5 kW
- H2/O2 storage (HOS):
 0.9 MWh @ 30 bar (200 bars max)

 Distributed Electrical Systems laboratory

The low-voltage infrastructure

Functions Time-deterministic sensing via PMUs

 École polytechnique fédérale de Lausanne

Distributed Electrical Systems laboratory

Functions – Situational awarenes

Needs

Evolution of the whole power systems infrastructure

- major changes in their operational procedures (i.e. ctrl, protection);
- need of situational awareness tools to manage the increasing complexity of the grid;
- main involved aspect is the network monitoring by means of <u>Phasor Measurement</u> <u>Units</u> (PMUs);

PMU definition (as stated in IEEE Std.C37.118-2011): "A device that produces synchronized measurements of **phasor** (*i.e.* its amplitude and phase), **frequency**, **ROCOF** (*Rate of Change Of Frequency*) from voltage and/or current signals based on a **common time source** that typically is the one provided by the Global Positioning System UTC-GPS."

Distributed Electrical Systems laboratory

Functions – Situational awarenes

Drivers Availability of new technologies (e.g., precise time dissemination)

 \rightarrow Join situational-awareness, protection and control schemes in power distribution grids

 Distributed Electrical Systems laboratory

Functions – Situational awarenes

Synchrophasors estimation in power distribution systems

Window based Synchrophasor Estimation Algorithms

Class	Typical algorithms	Advantages	Drawbacks			
DFT based	Fourier analysis	Low computational complexity,	Spectral leakage, Harmonic interference, Off-nominal freq.			
	Interpolated DFT	harmonic rejection				
Wavelet based	Recursive wavelet	Harmonic rejection	Computational complexity			
Optimization based	WLS	They usually provide accurate	Non deterministic: driven by			
	Kalman Filter	other methods	optimality criteria			
Taylor series based	Dynamic Phasor	It intrinsically reflects the dynamic behaviors of power systems	Computational complexity			

PATHFNDR lunch talk

Distributed Electrical Systems laboratory

Functions – Situational awarenes

Synchrophasors estimation in power distribution systems

Main sources of errors in DFT-based synchrophasor's estimation

PATHFNDR lunch talk

Electrical Systems

laboratorv

Functions – Situational awarenes

Synchrophasors estimation in power distribution systems

Possible corrections

- 1. Aliasing
- Introduction of adequate anti-aliasing filters
- Increasing of the sampling frequency

- 2. Long range leakage
- Use of appropriate windowing functions

3. Short range leakage

4. Harmonic interference

Interpolated DFT methods

 Iterative compensation of the selfinteraction

 Distributed Electrical Systems laboratory

Functions – Situational awarenes

Synchrophasors estimation in power distribution systems

Joint P+M class synchrophasor estimation – IpDFT solution for \cos^{α} windows

The IpDFT is a technique to extract the parameters f_0 , A_0 and φ_0 of a sinusoidal waveform by interpolating the highest DFT bins of the signal spectrum. It mitigates the effects of incoherent sampling $(f_0/\Delta f \notin \mathbb{N})$:

Interpolating the highest DFT bins → minimize spectral sampling

Electrical Systems

laboratory

Functions – Situational awarenes

Synchrophasors estimation in power distribution systems

Joint P+M class synchrophasor estimation – Enhanced-IpDFT algorithm

Electrical Systems

laboratory

Functions – Situational awarenes

Synchrophasors estimation in power distribution systems

Joint P+M class synchrophasor estimation – Enhanced-IpDFT poor performance vs OOBI

PATHFNDR lunch talk

Electrical Systems

laboratory

Functions – Situational awarenes

Synchrophasors estimation in power distribution systems

PATHFNDR lunch talk

laboratory

Distributed Electrical Systems

Functions – Situational awarenes

Synchrophasors estimation in power distribution systems

			TVE [%]				FE [mHz]					RFE [Hz/s]							
		IEEE Std		i-IpDFT			IEEE Std		i-IpDFT			IEEE Std		i-IpDFT					
		Р	Μ	C	OS	Ha	ann	Р	Μ	с	os	Hann		P M		cos		Hann	
				SNR	[dB]	SNR	[dB]			SNR	[dB]	SNR	[dB]			SNR	[dB]	SNR	[dB]
12				60	80	60	80			60	80	60	80			60	80	60	80
Si	gn Freq	1	1	0.024	0.002	0.03	0.003	5	5	1.3	0.1	1.5	0.1	0.4	0.1	0.095	0.009	0.126	0.012
Harn	n Dist 1%	1	1	0.108	0.094	0.028	0.003	5	25	5.4	4.7	1.3	0.1	0.4	-	0.086	0.009	0.112	0.011
Harm	n Dist 10%	1	1	0.055	0.047	0.026	0.003	5	25	2	1.1	1.2	0.1	0.4	- 1	0.085	0.009	0.124	0.011
	$f_0=47.5{ m Hz}$	-	1.3	0.056	0.022	0.108	0.082	-	10	2.7	1.1	5.6	4.1	-	-	0.217	0.101	0.513	0.369
OOBI	$f_0 = 50 \text{Hz}$	-	1.3	0.026	0.003	0.033	0.004	-	10	1.3	0.1	1.7	0.2	-	-	0.104	0.009	0.153	0.013
	$f_0=52.5 \mathrm{Hz}$	-	1.3	0.043	0.004	0.044	0.011	-	10	2.1	0.2	2.2	0.6	-	-	0.143	0.022	0.150	0.032

Electrical Systems

laboratory

Functions – Situational awarenes

Synchrophasors estimation in power distribution systems

Functions Real time situational awareness

 École polytechnique fédérale de Lausanne

Electrical Systems

laboratory

Functions – Situational awarenes

Real-time state estimation - Methods

 Static SE: infers the system state by using only current time information (e.g., Weighted Least Squares – WLS – or Least Absolute Value methods).

Recursive SE: takes into account information available from previous time steps and predict the state vector in time (e.g., Kalman Filter – KF – method).

Electrical Systems

laboratory

Functions – Situational awarenes

Example of installed sensors and PMUs

Electrical Systems

laboratory

Functions – Situational awarenes

RTSE workflow

Electrical Systems

laboratory

Functions – Situational awarenes

Electrical Systems

laboratory

Functions – Situational awarenes

Example of RTSE performance (latency assessment)

Applications Forecasting and dispatch

 École polytechnique fédérale de Lausanne

Applications – Day-ahead dispatch

 Distributed Electrical Systems laboratory

$p_{1,t}^{+,\omega} \text{ Incoming active power at the slack} p_{1,t}^{-,\omega} \text{ Outgoing active power at the slack minimize}_{p_b,s^{\text{disp}}} \sum_{\omega \in \Omega} \sum_{t=1}^T \left\{ (s_{1,t}^{\omega} - s_t^{\text{disp}})^2 + \mu \left((p_{1,t}^{+,\omega})^2 + (p_{1,t}^{-,\omega})^2 \right) + \lambda (p_{b,t}^{\omega})^2 \right\}$

subi	ject	to:

$\mathrm{SoE}_t^\omega = \mathrm{SoE}_{t-1}^\omega + T_s p_{b,t}^\omega$	$\forall t \in \mathcal{T}, \omega \in \Omega$
$0 \le ((p_{b,t}^{\omega})^2 + (q_{b,t}^{\omega})^2) \le (P_{\max}^b)^2$	$\forall t \in \mathcal{T}, \omega \in \Omega$
$aE_{\max}^b \le \operatorname{SoE}_t^\omega \le (1-a)E_{\max}^b$	$\forall t \in \mathcal{T}, \omega \in \Omega$
$\Phi_{\Xi}(oldsymbol{p}_t^{\omega},oldsymbol{q}_t^{\omega}) \leq 0$	$\forall t \in \mathcal{T}, \omega \in \Omega$
$p_{1,t}^{+,\omega} + p_{1,t}^{-,\omega} \ge q_{1,t}^{\omega} \tan(\pi/2 - \theta_m)$	$\forall t \in \mathcal{T}, \omega \in \Omega$
$p_{1,t}^{+,\omega} + p_{1,t}^{-,\omega} \ge -q_{1,t}^{\omega} \tan(\pi/2 - \theta_m)$	$\forall t \in \mathcal{T}, \omega \in \Omega$
$p_{1,t}^{\omega} = p_{1,t}^{+,\omega} - p_{1,t}^{-,\omega}$	$\forall t \in \mathcal{T}, \omega \in \Omega$
$p_{1,t}^{+,\omega} \ge 0, p_{1,t}^{-,\omega} \ge$	$\forall t \in \mathcal{T}, \omega \in \Omega.$

Applications – Day-ahead dispatch

 Distributed Electrical Systems laboratory

Experimental validation on the LV microgrid

Day-ahead scenarios using PV and load forecasting

Optimally-determined day-ahead dispatch plan

Battery power injections and SoC for the scenarios

Distributed Electrical Systems laboratory

Applications – Day-ahead dispatch

Experimental validation on the LV microgrid

Electrical Systems

laboratory

Applications – Day-ahead dispatch

Experimental validation on the LV microgrid using MPC

Real-time tracking of the dispatch plan

Battery power injection and SoC

PV curtailment action to help tracking the dispatch plan to avoid the saturation of the battery SoC.

Applications Agent-based real-time control

 École polytechnique fédérale de Lausanne

Applications Clustering of ancillary services

 École polytechnique fédérale de Lausanne

Applications – Assessment of power electronics ctrl

 Distributed Electrical Systems laboratory

Grid-forming (GFM)

Grid-following (GFR)

PATHFNDR lunch talk

Distributed Electrical

> Systems laboratory

Applications – Assessment of power electronics ctrls

Multi-service framework

$$P = P_{ref} + \sigma_f \cdot (f - f_{ref})$$
$$Q = Q_{ref} + \sigma_v \cdot (v - v_{ref})$$

Day-Ahead¹

 $\sigma_f, \sigma_v, \hat{P}_d$

1E. Namor, "Control of Battery Storage Systems for the Simultaneous Provision of Multiple Services." in IEEE Transactions on Smart Grid

Long term

prediction of prosumption

Frequency time series

Voltage time series

Dispatch Tracking² Model Predictive Control (MPC)

$$P_{ref}, Q_{ref}$$

² F. Sossan, "Achieving the Dispatchability of Distribution Feeders Through Prosumers Data Driven Forecasting and Model Predictive Control of Electrochemical Storage," in IEEE Transactions on Sustainable Energy

Short term

prediction of prosumption

BESS model

(TTC)

Real Time³ Check capability curve 800 600 Ar = 300 V Mir = 600 V 400 000 [kvar] O -200 -400 -600 -800 -600 -400 -200 200 400 600 800 P [kW] f_{ref}, v_{ref} ³ Real-time Control of Battery Energy Storage Systems to Provide Ancillary Services Considering Dynamic Capability of DC-AC Converters

Capability curve

BESS model

Measured values (AC voltage, etc.)

Electrical

Systems laboratory

Applications – Assessment of power electronics ctrls

Multi-service framework

$$P = P_{ref} + \sigma_f \cdot (f - f_{ref})$$
$$Q = Q_{ref} + \sigma_v \cdot (v - v_{ref})$$

Voltage time series

 $[\sigma_f^0, \boldsymbol{F}^o] = \operatorname*{arg\,max}_{\sigma_f \in \mathbb{R}^+, \boldsymbol{F} \in \mathbb{R}^N} (\sigma_f) \tag{4a}$

subject to:

$$SOE_0 + \frac{1}{E_{\text{nom}}} \left[\frac{T}{N} \sum_{i=0}^n \left(F_i + L_i^{\uparrow} \right) + \sigma_f W_{f,n}^{\uparrow} \right] \le SOE_{\text{max}},$$
(4b)

$$SOE_0 + \frac{1}{E_{\text{nom}}} \left[\frac{T}{N} \sum_{i=0}^n \left(F_i + L_i^{\downarrow} \right) + \sigma_f W_{f,n}^{\downarrow} \right] \ge SOE_{\text{min}},$$
(4c)

$$F_n + L_n^{\uparrow} + 0.2\sigma_f \ge P_{\max},\tag{4d}$$

$$F_n + L_n^{\downarrow} + 0.2\sigma_f \le P_{\max},\tag{4e}$$

Applications – Assessment of power electronics ctrls

Distributed Electrical Systems laboratory

 $P = P_{ref} + \sigma_f \cdot (f - f_{ref})$ $Q = Q_{ref} + \sigma_v \cdot (v - v_{ref})$

Day-Ahead¹

 $\sigma_f, \sigma_v, \hat{P}_d$

¹E. Namor, "Control of Battery Storage Systems for the Simultaneous Provision of Multiple Services," in IEEE Transactions on Smart Grid

> Long term prediction of prosumption

Frequency time series

Voltage time series

Dispatch Tracking² Model Predictive Control (MPC)

² F. Sossan, "Achieving the Dispatchability of Distribution Feeders Through Prosumers Data Driven Forecasting and Model Predictive Control of Electrochemical Storage," in *IEEE Transactions on Sustainable Energy*

Short term prediction of prosumption

BESS model (TTC) The expected average composite power flow at PCC at the end of 5-minutes window is

$$G_k^+ = \frac{1}{30} \left((k - \underline{k}) \cdot G_k + \sum_{j=k}^{\overline{k}} \hat{L}_{j|k} \right)$$

The **energy error** between the realization and the target in the 5-minute slot

$$e_k = \frac{300}{3600} \cdot (G_k^* - G_k^+ + \Delta G_k^F)$$

where the additional term ΔG_k^F considers the **deviation caused by FCR** of the converter:

$$\Delta G_k^F = \frac{1}{30} \sum_{j=\underline{k}}^{k-1} (50 - f_j) \cdot \sigma_f$$

Distributed Electrical

> Systems laboratory

Applications – Assessment of power electronics ctrls

Multi-service framework

$$P = P_{ref} + \sigma_f \cdot (f - f_{ref})$$
$$Q = Q_{ref} + \sigma_v \cdot (v - v_{ref})$$

Day-Ahead¹

Long term prediction of prosumption

Frequency time series

Voltage time series

Dispatch Tracking² Model Predictive Control (MPC)

$$P_{ref}, Q_{ref}$$

² F. Sossan, "Achieving the Dispatchability of Distribution Feeders Through Prosumers Data Driven Forecasting and Model Predictive Control of Electrochemical Storage," in IEEE Transactions on Sustainable Energy

> Short term prediction of prosumption

> > **BESS model** (TTC)

Measured values (AC voltage, etc.)

Applications – Assessment of power electronics ctrls

Distributed Electrical Systems laboratory

 Distributed Electrical

> Systems laboratory

Applications – Assessment of power electronics ctrls

Prosumption (net demand) scenarios

- Power and energy budgets are allocated to compensate the forecasting uncertainty of stochastic PV production and demand.
- The remaining energy budget is allocated for the FCR service (resulting in a droop of σ_f = 116 kW/Hz).

PATHFNDR lunch talk

 Distributed Electrical Systems laboratory

PATHFNDR lunch talk

Apps – Assessment of power electronics ctrls Experimental results

- The grid-forming converter-controlled BESS corrects the prosumption (in dashed red) such that the PCC power (in shaded grey) is tracking the dispatch plan (in black).
- The deviation of the PCC power from the dispatch plan is the result of BESS providing FCR service.
- BESS SOE is contained within its physical limits all over the day (as well as other constrained variables not shown here).

 Distributed Electrical

> Systems laboratorv

Applications – Assessment of power electronics ctrls

Experimental results

- Post-process analysis of the local grid frequency associated to gridforming and Grid-following experimental sessions.
- Relative Rate-of-Change-of-Frequency (rRoCoF) [Hz/s/W]

$$rRoCoF = \left|\frac{\Delta f}{\Delta P}\right|$$

This **metric is independent from the actual frequency variation** since the RoCoF is divided by the delivered BESS power.

Applications – Assessment of power electronics ctrls

- **Case 1**: the 24 hour-long experiment with GFM-controlled BESS providing multiple services.
- Case 2: a 15-minute window around the hourly transition (i.e., 00:00 CET) for the same day-long experiment.

[Hz/s/W]

• **Case 3:** a dedicated 15-minute experiment around the hourly transition with the GFR-controlled BESS providing only FCR (droop of 1440 kW/Hz).

1.5

 $\times 10^{-3}$

• **Case 4**: a dedicated 15-minute experiment around the hourly transition with the GFL-controlled BESS is providing only FCR (droop of 1440 kW/Hz).

The PATHFNDR activities

 École polytechnique fédérale de Lausanne

Motivations

 Distributed Electrical Systems laboratory

A primer on Swiss electricity market

- Day-ahead market is organized as a uniform auction with hourly contracts
 - Opens 45 days before delivery time and cleared the day before operation at 11.00.
 - Minimum bid size and step is 0.1 MW with prices between -500 to 3000 Euro/MWh.
- Given the day-ahead results, the **balancing responsible parties** (BRPs) of buyer and seller have to submit their schedules to the TSO (Swissgrid) until 14.30 the day before delivery.
- Balancing groups (BGs) represented by BRPs, are used for three purposes
 - Quantification of energy delivered,
 - coordination and accounting between TSO and market participants,
 - trade in day-ahead and intra-day markets.
- Swissgrid verifies that the schedules match based on day-ahead and BRPs input.
- BGs are not constrained geographically.

 Distributed Electrical Systems laboratory

The PATHFNDR setup

1. *Improving performance - efficiency, resilience cost competitiveness*

3. **Feeding sector coupling** – evaluate technologies, business mdoels

2. **Enabling flexibility** assessing flexibility across various sectors

- Flexible resources across different sites can be controlled to provide an aggregated flexibility,
- Could use existing platforms like *ReMap* to connect resources at DESL-EPFL, PSI, EMPA, HSLU etc.

PATHFNDR lunch talk

Aggregation of DERs flexibilities in distribution grids

- Modeling of local constraints
 - Distribution grids (model-based or model-less)
 - Flexible assets
 - BESSs, Super-caps
 - PVs, EVs, Res. dem.
 - EL+FC .. etc.
- Aggregation
 - Forecast of stochastic flexibilities
 - Allocation of resources
- Communication
 - Common IT infrastructure for all the assets to communicate at scheduling/control stage.
 - Historian and RT Monitoring.

 Distributed Electrical Systems laboratory

PATHFNDR lunch talk

Multi-grid aggregation case study (simulation)

Performance assessment

PATHFNDR lunch talk

Final remarks

 École polytechnique fédérale de Lausanne

Final remarks

Distributed Electrical Systems laboratory

- The EPFL smart grid platform is an ongoing project for the innovative and sustainable management of stochastic energy resources, power generation facilities and end-users.
- It represents an advanced model for students, research staff, industry, authorities and the general public to develop technologies for the operation of future power distribution systems and their coupling with other energy systems.
- The involvement of the platform within the PATHFNDR project will demonstrate how to coordinate multi-site and multi-time dispatching of geographically-distributed microgrids that mutualise power/energy flexibilities made available by fully-controllable and stochastic energy resources.