PATHFNDR project

CESAR-P

Empa-Urban Energy Systems Laboratory Kristina Orehounig

Sweet swiss energy research for the energy transition

PATHFNDR

CESAR - P

Combined Energy Simulation And Retrofitting (Python) is a software to evaluate **energy consumption and retrofitting strategies** for buildings and neighborhoods.

CESAR-P was developed by the Urban Energy Systems Lab at Empa and builds on the tool **CESAR** which was developed at the Chair of Building Physics at ETH Zurich.

Retrofit modelling – change in energy demand

Business as usual

PATHFNDR

Retrofit modelling – change in energy demand

New Energy Policy

CESAR - P

Combined Energy Simulation And Retrofitting (Python) is a software to evaluate **energy consumption and retrofitting strategies** for buildings and neighborhoods.

- Bottom-up building stock simulation tool to simulate each building individually
- Takes shading of surrounding objects into account

PATHFNDR

Pre-processed 3D buildings geodata -

Neighboring buildings are considered as shading objects

Automated process – central building – idf files generated ^{13.10.2021}

5

CESAR - P

PATHENDR

Combined Energy Simulation And Retrofitting (Python) is a software to evaluate **energy consumption and retrofitting strategies** for buildings and neighborhoods.

- Bottom-up building stock simulation tool to simulate each building individually
- Takes shading of surrounding objects into account
- Python based tool which uses the building simulation tool EnergyPlus
- Connected to various databases for building construction, costs, emissions, use profiles, geometries

Features

PATHENDR

- Models individual buildings' indoor • temperatures, heating and cooling loads, domestic hot water consumption, electricity consumption, comfort parameters
- Future retrofitting strategies can be simulated ٠ (e.g. insulating of walls, windows, roofs,...)
- Outputs operational costs and emissions, ٠ embodied emissions and investment costs of retrofitting solutions

Spatial and temporal resolution

• Spatial coverage: Switzerland

PATHFNDR

- Spatial resolution: building level
- Temporal coverage: dependent on weather file
- Temporal resolution: hourly (also 10min possible)
- Sector coverage: space heating, cooling, domestic hot water, electricity

Neighborhoods

Typical buildings in Switzerland

Case study: Urban – Suburban – Rural districts

Project objectives:

 Evaluate the current and future energy consumption of buildings

Key outcomes:

 Change in energy consumption under different transformation scenarios (Swiss Energy Strategy 2050)

Wang, et al. (2018) 'CESAR: A bottom-up housing stock model for Switzerland to address sustainable energy transformation strategies' Energy and Buildings Vol 169, 9-26.

Case study: Urban – Suburban – Rural districts

Key outcomes:

- District total retrofitting investment costs for different transformation scenarios (considering envelope retrofitting and system replacement)
- Heating system shares and transformations until 2050 for the three districts and the different transformation scenarios

PATHFNDR

Wang, et al. (2018) 'CESAR: A bottom-up housing stock model for Switzerland to address sustainable energy transformation strategies' Energy and Buildings Vol 169, 9-26.

Case study: Optimal retrofitting solutions for Swiss buildings

NFP70: Energiewende und technische

Regulation EnTeR

Project objectives:

- Assess optimal retrofitting solutions for typical buildings in Switzerland
- Evaluate costs, operational and embodied CO2 emissions

500 single and multi-family buildings which represent 1.8 Mio buildings

Case study: Optimal retrofitting solutions for Swiss buildings

Key outcomes:

- CESAR is used for demand simulation together with an energy hub optimization approach
- 10 most promising retrofitting solutions to reach goals of the SIA-Effizienzpfad Energie

Typical solutions: building systems

Case study: Passive cooling potential in 2050

SCCER FEEB&D - Urban Planning for Smart &

Resilient Cities/Communities

Project objective:

 Evaluate passive cooling potential for Swiss buildings in 2050

Key outcomes:

PATHENDR

- Cooling demand under different climate change scenarios
- How effective is night ventilation and window shading as passive cooling measures

Case study: Urban densification and its impact on energy use SFOE project StaVerdi

 Extended CESAR-P to include the embodied emissions of new builds

Key outcomes:

PATHFNDR

- A timber strategy for the new builds had
 50% less emissions than the concrete
- Densification strategies involving a mix of new and old should address both the performance of retrofitted buildings and the embodied emissions of new builds

13.10.2021 14

Eggimann et al. (2021) 'Geospatial assessment of sustainable urban densification potentials' Sustainable Cities and Society.

CESAR-P Architecture

- CESAR-P has a modular structure that is managed by individual .yml config files
- These are combined by CESAR-P
- Elements of the configs can be redefined by the user

NEIGHBOU RADI	HOOD: IS: 50 # meter
	_SHAPE: AL_STORY_HEIGHT: 3.0
	kage-default config stores SIA Profiles within its package, which is not that good. Thus, ou want your SIA Profiles stored here. you use the ProjectManager. If you want to have different profile sets for different sca nario specific config to set different <u>pathes</u> per scenario, otherwise <u>porfiles</u> of first of <u>VARIABLE_SAVE_FOLDER: "./sia_params_gen/variable/"</u> <u>NOMINAL_SAVE_FOLDER: "./sia_params_gen/nominal/"</u>
	ration options see default_config.yml in the packages/folders, e.g. geometry or construct : SION: "9.3.0 <mark>"</mark>
	ration options see default_config.yml in the packages/folders, e.g. geometry or construct SION: "9.3.0" S: cified here must be compatible with <u>cesarp</u> .manager.BldgModelFactory. <u>Archetypical</u> Construct ONSTRUCTION_FACTORY_CLASS: "BuildingSpecific <u>Archetyp</u> ConstructionFactory.BuildingSpecific TRATION_PROFILE_VALUE: 1 alse PDPOINT: "http://emp-graphdb01.empa.emp-eaw.ch:7200/repositories/ues_building_archetypes"
	ration options see default_config.yml in the packages/folders, e.g. geometry or construct :: ISION: "9.3.0" S: cified here must be compatible with <u>cesarp</u> .manager.BldgModelFactory. <u>Archetypical</u> Construct ONSTRUCTION_FACTORY_CLASS: "BuildingSpecific <u>Archetyp</u> ConstructionFactory.BuildingSpecific TRATION_PROFILE_VALUE: 1 alse True DPOINT: "http://emp-graphdb01.empa.emp-eaw.ch:7200/repositories/ues_building_archetypes"
	ration options see default_config.yml in the packages/folders, e.g. geometry or construct SION: "9.3.0" S: cified here must be compatible with <u>cesarp</u> .manager.BldgModelFactory. <u>Archetypical</u> Construct ONSTRUCTION_FACTORY_CLASS: "BuildingSpecific <u>Archetyp</u> ConstructionFactory.BuildingSpecific/ TRATION_PROFILE_VALUE: 1 alse True DPOINT: "http://emp-graphdb01.empa.emp-eaw.ch:7200/repositories/ues_building_archetypes" TILATION:

Example user defined config file

Process

Modelling

- 1. Building Model Generation
- 2. Retrofitting Selection
- 3. EnergyPlus Simulations
- 4. Results processing

Process

Input

Modelling

- 1. Building Model Generation
- 2. Retrofitting Selection
- 3. EnergyPlus Simulations
- 4. Results processing

Process

Input

Modelling

- **Building Model Generation** 1.
- 2. **Retrofitting Selection**
- **EnergyPlus Simulations** 3.
- Results processing 4.

Output

- Annual demands Space heating Space cooling Domestic hot water Electricity 🖓
- Hourly results can be queried on demand
- Operational costs and eq
 - emissions
- Retrofit measures

C02

Retrofitting costs and embodied emissions

PATHENDR

buildings

Geometry Creation: inputs and configuration parameters

Construction and Operation Properties

PATHFNDR

Building Container Class

- Building Container is a class that stores the building model, the results and the assumptions
- These containers are stored as json files alongside the EnergyPlus outputs
- Python functions inside CESAR-P can read and analyze the contents of the BuildingContainers for post processing and resimulation

Building containers are created for individual buildings

Total heating demand stored inside the building container

Retrofitting

- CESAR-P treats each of the building elements separately during the retrofit
- It is possible to investigate strategies involving any combination of:
 - Roof
 - Walls

PATHENDE

- Window
- Ground Floor
- CESAR-P outputs a 'retrofit log' containing the embodied emissions for each element investigated in the specified case.

Example script to create a retrofit study:

<pre>self.retrofit_manager = SimpleRetrofitManager</pre>	<pre>(ureq=cesarp.common.init_unit_registry(),</pre>
	<pre>base_config=self.config_dict,</pre>
	base_scenario_name=" orig",
	<pre>base_project_path=self.output_path,</pre>
	year_of_retrofit=2020,
	fids_to_use=None)

Creating a 'full retrofit' case, comprised of roof, wall, window and ground floor:

self.retrofit_manager.add_retrofit_case("full_retrofit", [BuildingElement.ROOF
BuildingElement.WALL,
BuildingElement.WINDOW,
BuildingElement.GROUNDFLOOR])

Average embodied emissions across a neighbourhood for each retrofitted building element

Validation / calibration

- Compared outputs of CESAR to annual heating energy consumption of buildings in Zernez
- Overall accuracy quite good

PATHENDR

- Individual buildings show in some cases very high differences between measured and simulated
- Further calibration activities are currently ongoing

	Measured	Simulated	Deviation
			[%]
Total Heating demand [GWh/Year]	3.366	3.331	-1.05

Limitations

- Databases are currently only for Switzerland available
- Geometry input is in 2.5D, roofs are assumed to be flat and each floor is modelled as one thermal zone
 -> more advanced geometry input is under development.
- No user-interface is currently available

Linkage to other tools of the PATHFNDR project

• CESAR-P & Ehub tool:

Output of CESAR-P (energy demand of districts) is used in an Energy hub optimization as input

Potential links:

- CESAR-P & Nexus-E (energy demand inputs)
- CESAR-P & Calliope (energy demand inputs)
- CESAR-P & ReMap (energy demand inputs)

Future development under the PATHFNDR project

- WP1: extend the scope to other European countries (e.g. archetype buildings) and derive demand profiles for other countries
- WP2: integrate demand flexibilities in CESAR-P
- Direct import of CityGML geometries containing roof geometries and building parts

Building surfaces of the SwissTopo CityGML model viewed in Cesium

PATHENDR

Users

Current users:

 Researchers in the field of energy system modelling (city, regional or national level)

Potential users:

- Cities and communities
- Consultants for energy system planning
- ...

PATHFNDR _____

License

- AGPLv3 open source license.
- Further information: <u>https://www.empa.ch/web/s313/software-tools</u>
- Source code: <u>https://github.com/hues-platform/cesar-p-core</u>
- Documentation: <u>https://cesar-p-core.readthedocs.io/en/latest/</u>
- Download: <u>https://pypi.org/project/cesar-p/</u>

Contributors

CESAR-P:

- Leonie Fierz
- James Allan
- Ricardo Silva
- Aaron Bojarski
- Sven Eggimann
- Natasa Vulic
- Portia Murray
- Kristina Orehounig

CESAR:

- Danhong Wang
- Jonas Landolt
- Georgios Mavromatidis
- Kristina Orehounig

ETH zürich

Kristina Orehounig kristina.orehounig@empa.ch Empa, Urban Energy Systems Laboratory

PATHFNDR: <u>https://sweet-pathfndr.ch/models/</u> CESAR-P: <u>https://www.empa.ch/web/s313/software-tools</u>

